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ABSTRACT 
 
 
 
 This dissertation investigates Multidimensional Packing Problems (MD-PPs): the 

Pallet Loading Problem (PLP), the Multidimensional Knapsack Problem (MD-KP), and 

the Multidimensional Bin Packing Problem (MD-BPP).  In these problems, there is a set 

of items, with rectangular dimensions, and a set of large containers, or bins, also with 

rectangular dimensions.  Items cannot overlap (share the same region in space), and, 

when packed, must be completely located within the bin.  We develop new theory for 

PLP, and apply it to the construction of new bounds, heuristics, and an exact algorithm.  

The bounds verify that the heuristics optimally solve 99.999% of PLP instances with up 

to 100 items; in the instances that the heuristics fail to solve optimally, their best solution 

differs from the optimum by only one item.  Using our new PLP theory, we implement 

algorithms to solve orthogonal non-guillotine MD-KP instances and are the first to obtain 

exact solutions for some instances from the literature.  Using these MD-KP algorithms, 

we develop the first exact algorithm for the orthogonal non-guillotine MD-BPP and are 

the first to obtain exact solutions to several instances from the literature. 
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EXECUTIVE SUMMARY 
 

This dissertation investigates Multidimensional Packing Problems (MD-PPs): the 

Pallet Loading Problem (PLP), the Multidimensional Knapsack Problem (MD-KP), and 

the Multidimensional Bin Packing Problem (MD-BPP).  In these problems, there is a set 

of items, with rectangular dimensions, and a set of large containers, or bins, also with 

rectangular dimensions.  Items cannot overlap (share the same region in space), and, 

when packed, must be completely located within the bin.  In some cases, we want to 

maximize the value of items packed in a single bin (PLP and MD-KP).  In others, we 

want to minimize the number of bins used to pack all items (MD-BPP). 

MD-PPs arise when preparing a shipment of goods in rectangular boxes inside 

rectangular containers, or cutting smaller pieces from a larger stock (also known as the 

One-, Two-, or Three-Dimensional Cutting Stock Problem); allocating resources over 

time; planning the layout of newspaper pages; designing new computer chips; assigning 

processors in parallel computers; and many others.  MD-PPs arise in the obvious military 

logistic applications and in others, e.g., campaign planning, where forces available and 

time are the two dimensions involved. 

Most MD-PPs are known to be NP-complete and the related literature is rich in 

heuristics and approximation algorithms.  There are efficient algorithms that yield 

optimal solutions for special cases of the general problem.  The complexity of some of 

these special cases is still unknown. 

In this dissertation, we implement new techniques, both exact and heuristic, to 

solve instances of PLP, MD-KP and MD-BPP.  These techniques are based primarily on 

new theory developed for PLP. 

Initially, we analyze the effect of restricting rotation and the effects of other 

common pattern restrictions on the number of bins required to solve instances of Two-

Dimensional Bin Packing Problems (2D-BPP).  We define the Minimum Size Instance 

(MSI) of an equivalence class of PLP, and show that every class has one and only one 

MSI.  We also develop bounds on the dimensions of item and pallet in the MSI of a class, 

and show that a bound used for almost 15 years is incorrect.  Applying the newly 

developed bounds on the MSI dimensions, we enumerate all 3,080,730 equivalence 
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classes with an area ratio (AR) bound no greater than 100 boxes.  Previous work in this 

area considered only a subset of these classes.  

We also present new bounding procedures for PLP.  Some of these bounds rely on 

new relations among distinct equivalence classes of PLP (restricted and relaxed classes).   

We develop new heuristics for PLP.  The G5-heuristic computes optimal solutions 

to all instances of PLP with an AR bound of up to 51 boxes, and 99.999% of all possible 

instances with an AR bound of up to 100 boxes, differing from the optimum solution by 

at most one box in the 0.001% remaining instances.  We develop three other heuristics to 

solve some instances not solved by the G5-heuristic or by heuristics from the literature. 

After applying the new bounding procedures and heuristics, 6,952 equivalence 

classes of PLP with an AR bound of up to 100 boxes remain without a proven optimal 

solution.  We develop an exact algorithm, the HVZ algorithm, to solve these remaining 

instances.  With this new exact algorithm and the new bounds, we are able to identify the 

optimal solutions for the remaining instances. 

We then extend the HVZ algorithm to develop the Diagonal Fill Algorithm (DFA) 

for the Two-Dimensional Knapsack Problem (2D-KP) and the Three-Dimensional 

Knapsack Problem (3D-KP).  This is the first algorithm to solve instances of 2D-KP and 

3D-KP from the literature, allowing 90º item rotation (orthogonal), and without the 

common guillotine cut restriction (non-guillotine). 

We apply the algorithm for MD-KP within a branch-and-price algorithm to solve 

instances of MD-BPP.  This is, also, the first algorithm to solve the orthogonal non-

guillotine instances of MD-BPP from the literature.  For cases where a good solution 

sooner is better than an optimal solution later, heuristic variations of our exact branch-

and-price algorithm outperform existing heuristics on standard test instances.  
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I. MULTIDIMENSIONAL PACKING PROBLEMS 

A. INTRODUCTION TO MULTIDIMENSIONAL PACKING PROBLEMS 

This dissertation investigates Multidimensional Packing Problems (MD-PPs): the 

Pallet Loading Problem (PLP), the Multidimensional Knapsack Problem (MD-KP), and the 

Multidimensional Bin Packing Problem (MD-BPP).  In these problems, there are a set of 

items, with rectangular dimensions, and a set of large containers, or bins, also with 

rectangular dimensions.  Items cannot overlap (share the same region in space), and, when 

packed, must be completely located within the bin.  In some cases, we want to maximize 

the value of items packed in a single bin (PLP and MD-KP).  In others, we want to 

minimize the number of bins used to pack all items (MD-BPP). 

MD-PPs are encountered when preparing a shipment of goods in rectangular boxes 

inside rectangular containers, or when cutting smaller pieces off some larger stock (also 

known as the One-, Two-, or Three-Dimensional Cutting Stock Problem); allocating 

resources over time; planning the layout of newspaper pages; designing new computer 

chips; assigning processors in parallel computers; and other applications.  MD-PPs arise in 

the military in obvious logistic applications and in others, e.g., campaign planning, where 

forces available and time are the two dimensions involved.  There are many other 

applications too (e.g., Dyckhoff [1990]). 

Most MD-PPs are known to be NP-complete [Garey and Johnson 1979], and the 

related literature is rich in heuristics and approximation algorithms.  Efficient algorithms 

that yield optimal solutions, for some restrictions, or special cases, of the general problem 

also exist.  The complexity of some of these special cases is still unknown. 

In this dissertation, we implement new techniques, both exact and heuristic, to solve 

instances of PLP, MD-KP and MD-BPP.  These techniques are based primarily on new 

theory developed for PLP. 
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B. PROBLEM DEFINITION 

The basic Cutting and Packing Problem (C&PP) involves two sets, one set of small 

objects, items, and one set of large objects, bins.  All items and bins have fixed shapes.  The 

problem is how to arrange items within the bins in order to optimize some function, subject 

to constraints restricting items not to overlap, and to ensure the items are fully contained 

inside the bin.  There is no difference, in terms of solution strategies, between packing and 

cutting problems (e.g., Dyckhoff [1990]). 

Additional restrictions on shapes and quantities of items and bins available, 

restrictions on certain arrangements, the selection of objective functions, the availability of 

complete information, and the number of dimensions involved generate the variations on 

C&PP encountered in the literature.  MD-PPs are special cases of C&PP where both items 

and bins have rectangular shape.  We use 2D and 3D when referring specifically to two- 

and three-dimensional problems. 

Some of the most studied MD-PPs are Multidimensional Bin Packing, 

Multidimensional Knapsack, Multidimensional Strip Packing, and Pallet Loading. 

• Multidimensional Bin Packing Problem (MD-BPP).  A 2D-BPP instance 

consists of a list I of rectangular items with dimensions ( , )i il w  and demand 

for allid i I∈  as well as a list B of bins with dimensions ( , )b bX Y  and cost 

for allbC b B∈ .  For a 3D-BPP instance, the items have dimensions ( , , )i i il w h  

and the bins have dimensions ( , , )b b bX Y Z .  The objective is to minimize the total 

cost of the bins used to pack all items.  If only one type of bin is available, with 

dimensions ( , )X Y  or ( , , )X Y Z , the objective becomes the minimization of the 

number of bins used.  3D-BPP is also called the Multi-Container Loading 

Problem. 

• Multidimensional Knapsack Problem (MD-KP).  In an instance of MD-KP, 

items have values ,iv i I∈ , and only one bin is available.  The objective is to 

pack, in the bin, the subset of items with maximum value.  If the value of an 

item is proportional to its area, or volume, then an equivalent objective is to 

minimize the unused, or wasted, region in the bin.  If ,id i I= ∞ ∈ , then the 
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problem is Unconstrained; otherwise, it is Constrained.  This problem is 

different from the Multi-Constraint Knapsack Problem, also called the Multi-

knapsack Problem, where the constraints are defined over possibly independent 

dimensions.  Lin [1998] presents a recent survey on multi-constraint knapsack 

problems.  3D-KP is also called the Container Loading Problem. 

• Multidimensional Strip Packing Problem (MD-SPP).  In MD-SPP, one of the 

dimensions of the bin is unconstrained (the length in 2D or height in 3D) and we 

want to minimize the unconstrained dimension required to pack all items. 

• Pallet Loading Problem (PLP).  PLP is encountered when trying to maximize 

the number of identical boxes (items) with dimensions a b× , loaded in a pallet 

(bin) with dimensions X Y×  where each item has a “this side up” type of 

restriction (e.g., Bischoff and Dowsland [1982]).  In this case, items are loaded 

in vertical layers, of the same height, and the problem reduces to finding the 

two-dimensional arrangement which maximizes the number of packed items in a 

layer.  PLP is an example of unconstrained 2D-KP with only one type of item to 

pack. 

Although MD-KP and MD-SPP are distinct, an algorithm for MD-KP in n 

dimensions can be used to solve MD-SPP in n dimensions.  If an algorithm for 2D-KP is 

available, we can fix the width of the bin and try different values for the length.  The 

solution with minimum length, such that all items are packed, is the solution to 2D-SPP.  

Also, algorithms for MD-KP and MD-SPP can determine whether all items on a list of 

items can be packed in a single bin.  When using an algorithm for MD-KP, we use the area, 

or volume, of the items as their values.  With the algorithm for MD-SPP, we solve for the 

minimum dimension, and if the solution does not exceed the corresponding dimension on 

the bin, then the packing is feasible. 

When packing bins, we require all items to be pushed as much as possible to the 

left, front, and bottom of the bin.  An item cannot be pushed any further if it touches the 

border of the bin or another item.  This packing pattern is called a Normal Packing Pattern 

[Christofides and Whitlock 1977].  
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C. TYPOLOGY OF CUTTING AND PACKING PROBLEMS 

In an approach similar to the characterization of queuing problems, Dyckhoff 

[1990] proposes “a consistent and systematic approach for a comprehensive typology 

integrating the various kinds of [packing and cutting] problems.”  Dyckhoff identifies nine 

main characteristics of this family of problems: Dimensionality, Quantity Measurement, 

Shape of Figures, Assortment, Availability, Pattern Restrictions, Assignment Restrictions, 

Objectives, and Status of Information and Variability. 

Dimensionality: What is the minimum number of dimensions necessary to describe 

the geometry of the packing patterns?  This is not necessarily the number of dimensions of 

the items and bins involved.  In some cases, although dealing with three-dimensional items, 

we are only interested in the arrangement of these items on a plane, reducing the problem to 

two-dimensional.  An example is PLP, where the same two-dimensional pattern is repeated 

on each vertical layer of the pallet.  This dissertation covers two- and three-dimensional 

problems. 

Quantity measurement: What is the objective function?  It can be the number of 

bins used to pack the items (as in MD-BPP) or it can be the length or height of a continuous 

bin (as in MD-SPP).  The Earliest Completion Time Problem, where a set of tasks is 

assigned to multiple workers to minimize the total time to complete the tasks, is an example 

of a continuous quantity, time, being optimized.  In instances of MD-PP studied in this 

dissertation, we minimize the number of bins used (MD-BPP), or we maximize the value of 

packing one bin (MD-KP and PLP).  

Shape of figures: What shapes do items and bins have?  They can be non-

rectangular, and even non-regular.  The Marker Layout Problem, encountered in the 

garment industry, is an example where items have irregular shapes (e.g., Dowsland and 

Dowsland [1995]).  In this problem a large piece of cloth is cut in smaller irregular shaped 

parts so as to minimize leftovers.   

The orientation of items inside bins is also addressed under this characteristic.  This 

dissertation only covers rectangles, in two dimensions, and orthogonal parallelepipeds, in 

three dimensions.  Also, items can be rotated, but their sides must be parallel to the sides of 

the bin. 
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Assortment: What is the number of different shapes available for items and bins?  

In the most common formulation of MD-BPP, all bins have the same shape.  In PLP, all 

items have the same shape, but may differ in their orientation.  In “The Dissection of 

Rectangles into Squares” [Brooks et al 1940], items are squares, but each with a different 

size.  This dissertation analyzes problems with items and bins having a small assortment of 

different shapes.  

Availability: Are there constraints on the available quantities for items and bins?  

MD-KP is an example where the available number of bins is limited.  The literature has 

references on constrained and unconstrained problems, conditioned on the existence of 

bounds on the quantity of items to be packed (e.g., Beasley [1985a]).  This dissertation 

addresses problems with various restrictions on availability of items and bins. 

Pattern restrictions: What patterns or geometric combinations can the items take 

inside the bins?  As an example, it is common to assume in the cutting stock problem that 

all cuts are guillotine cuts.  A guillotine cut divides a piece of larger stock in two smaller 

pieces with a cut from one side to the other.  The recursive application of guillotine cuts 

forms a guillotine cut pattern.  Figure I.1 provides an example of a two-dimensional pattern 

produced with guillotine cuts.  This dissertation analyzes the effect of some pattern 

restrictions. 

Assignment restrictions: Are there restrictions on the possible assignments of the 

items?  Compatibility of items being packed together may limit the number of feasible 

assignments.  In other cases, information on all items is not available when deciding how to 

pack an item.  This happens, for example, when loading the items as they are being 

delivered:  These are “on-line” problems.  This dissertation considers only “off-line” 

problems, in which shapes and quantities of all items and bins are known when selecting 

the packing pattern. 

Objectives: Is the objective function to be maximized or minimized?  There might 

be a cost associated with the number, or type, of bins used (as in MD-BPP).  The total 

quantity of “scrap,” or unused material, after cutting items is another common criterion to 

be minimized (as in MD-KP).  As stated above, this dissertation addresses both the 



6 

minimization of the number of bins used, and the maximization of the value of items 

packed in one bin. 

 

Figure I.1 An example of a pattern with guillotine cuts.  
At each step of the cutting process, a larger rectangle is slit in two smaller rectangles, with 
a cut from one side to the other.  (a) The original stock is cut in two smaller pieces; (b) and 
(c) subsequent cuts are performed; and (d)  pieces are trimmed to their correct size. 

Status of information and variability: Are the exact shapes and quantities known 

with certainty?  If only the distribution of the items is known, one of the most common 

objectives is to maximize the expected number of items packed.  Coffman and Shor [1990] 

and Coffman and Lueker [1991] exemplify work in this area.  This dissertation investigates 

only the deterministic version of the problem. 

After considering these nine characteristics, Dyckhoff proposes 96 problem types 

identified by the four characteristics of dimensionality, kind of assignment, assortment of 

bins, and assortment of small items. 

Dimensionality: 

 (1)  One-dimensional. 

 (2)  Two-dimensional. 

 (3)  Three-dimensional. 
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 (N)  N-dimensional, N > 3. 

Kind of Assignment: 

 (B)  All bins and a selection of items. 

 (V)  A selection of bins and all items. 

Assortment of bins: 

  (O)  One bin. 

 (I)  All bins are identical. 

 (D)  Bins have different sizes. 

Assortment of Small Items: 

 (F) Few items, with different shapes and sizes. 

 (M) Many items of many different shapes and sizes. 

 (R) Many items of relatively few different (non-congruent) shapes and sizes. 

 (C) Items with congruent sizes. 

Using this typology, the problems in this dissertation, MD-BPP, MD-KP, and PLP, 

are identified as: 

• MD-BPP: 2 / / / or 3/V/ /V ⋅ ⋅ ⋅ ⋅ .  For example, a 3D-BPP with identical bins, and 

a two different items types fall in 3 / / /V I F . 

• MD-KP: 2 / / /B O ⋅  or 3/ / /B O ⋅ , where we must pack a selection of items in 

one bin. 

• PLP: 2 / / /B O C , a special case of unconstrained 2D-KP. 

Some of the characteristics of problems approached in this dissertation, namely the 

restriction of rectangular shapes for both items and bins, and finite dimensions for bins, are 

not distinguished within this typology. 

D. LITERATURE REVIEW FOR MD-PP 

The basic C&PP is known to NP-hard, with some specific cases shown to be NP-

complete in the strong sense.  This encourages the analyst to concentrate his work in ways 

to identify special situations where the solution might be obtained in less time than would 

be required by the total enumeration of all possible solutions, or to develop heuristics or 

approximation algorithms [Garey and Johnson 1979].  
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The operations research (OR) literature is rich in references to C&PP under titles 

like Trim Problem, Loading Problem, Floor Layout Problem, Job Scheduling, and Resource 

Allocation.  Sweeney and Paternoster [1992] provide a comprehensive bibliography on the 

subject up to 1990, with more than 400 references.  Lodi et al [2002a] survey two-

dimensional problems.  Bischoff and Wäscher [1990], Dyckhoff and Wäscher [1995] and 

Wang and Wäscher [2002] edit special issues of the European Journal of Operations 

Research on the subject.  The online library of the Special Interest Group in Cutting and 

Packing [SICUP 2002] is a source of information on recent C&PP work.  

The first references in the literature to this family of problems are related to the 

problem of decomposing a square into incongruent sub-squares; many mathematicians in 

the past considered this to be an unsolvable problem.  Brooks et al [1940] are the first to 

model the problem as a network.  Meschkowski [1966] shows that decomposing rectangles 

into squares can also be modeled as a network flow problem.  Gambini [1999] exemplifies 

present work in this square decomposition problem.  See also Biró and Boros [1984] and 

Lins et al [2002] for network-based models for MD-PP.   

In 1939, Kantorovich (Kantorovich [1960]) analyzes a problem he names 

Minimization of Scrap.  This is the one-dimensional cutting stock version of MD-BPP, 

under a linear programming framework.  In his work, he assumes that a list of feasible 

cutting patterns is available beforehand, and approaches the decision of which patterns to 

select. 

Gilmore and Gomory [1961] present a method for generating “on the fly” the best 

possible patterns for the one-dimensional cutting stock version of MD-BPP, using column 

generation.  This is a heuristic procedure, because it uses a rounding scheme for leftover 

fractional solutions.  However, in large instances of the problem, the loss in optimality due 

to rounding is expected to be small.  Gilmore and Gomory [1965] extend their own work to 

higher dimensions, but only consider patterns generated by multistage guillotine cuts.  At 

each stage of the multistage cutting process, guillotine cuts are performed in only one 

direction.  Beasley [1985a] and Farley [1990], among others, also investigate algorithms 

based on multistage guillotine cuts. 
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Barnet and Kynch [1967] analyze the packing of 1a ×  rectangles within a larger 

rectangle, and present possible solutions to this problem.  De Bruijn [1969] studies the 

packing of n-dimensional bricks within a large n-dimensional box.  Brualdi and Foregger 

[1974] extend the work on harmonic bricks.  An 1 2 na a a× × ×…  brick is said to be 

harmonic if the integers 1 2, , , na a a…  can be rearranged into 1 2, , , na a a′ ′ ′… , such that 

1 2 3 na a a a′ ′ ′ ′…  (where cd signifies that c divides d).  Barnes [1979] uses this work to 

propose a new bound for PLP, and to show that for “sufficiently large” problems, this 

bound is exact.  A problem is considered sufficiently large if the dimensions of the pallet 

are significantly larger than the dimensions of the item (i.e., min{ , }X Y a b≥ ∗ ). 

Christofides and Whitlock [1977] propose a tree-search algorithm for 2D-KP with 

guillotine cuts and with items restricted to a fixed orientation.  In their formulation, 

guillotine cuts can be performed in both directions; their algorithm is based on generating 

all feasible cutting patterns.  They also propose the use of Normal Patterns, representing 

left-bottom justified packing patterns.  Herz [1972] presents the same idea with the name of 

Canonical Dissections. 

Wang [1983] presents a different approach for enumerating the feasible guillotine 

patterns in 2D-KP.  Her algorithm generates patterns by “successively adding the rectangles 

to each other.”  See also Oliveira and Ferreira [1990] and Daza et al [1995]. 

Beasley [1985b] proposes the first exact algorithm for solving 2D-KP without the 

guillotine cut restriction (non-guillotine 2D-KP).  His approach is based on a branch-and-

bound tree search using lagrangean relaxation of a binary integer program (BIP) to 

generate bounds.  In his formulation the orientation of items is fixed, although he proposes 

an approach to deal with the situation of 90º rotations.  Christofides and Hadjiconstantinou 

[1995] use a similar idea, with an improved formulation, but also with fixed orientation.  

Baker et al [1980] propose an approximation algorithm for 2D-PP, and compute 

asymptotic performance bounds for this algorithm.  Coffman et al [1980], Baker and 

Schwarz [1983], and Kenyon and Rémila [2000] also consider approximation algorithms 

for 2D-PP. Chung et al [1982] use a hybrid procedure, based on 2D-PP, in an 

approximation algorithm for 2D-BPP with fixed orientation, and show that the solutions 
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obtained are, in the worst case, larger than the optimal solution by a factor slightly larger 

than 2. 

Several authors investigate different types of heuristics for C&PP. George and 

Robinson [1980] propose a heuristic to pack three-dimensional boxes in containers, and 

report using the heuristic to pack “about 800 boxes of up to 20 different types in each 

shipment.”  Gehring et al [1990], and Bischoff et al [1995] also describe heuristics for 3D-

BPP.  Bischoff and Marriott [1990] investigate the effect of certain parameters, such us 

sorting and ranking policies, on the performance of two existing heuristics, and conclude by 

proposing a new combined heuristic.  Kröger [1995] and Gómez and de la Fuente [2000] 

propose heuristics with genetic approaches.  Healy and Moll [1996] describe a heuristic 

based on local search.  Faina [2000] proposes an algorithm based on simulated annealing.  

Hopper and Turton [2001] investigate hybrid heuristics. 

Li and Cheng [1990] propose approximation algorithms for 3D-SPP, which 

guarantee results not worse than 3.25 times the optimum height of packed items.  Their 

algorithms divide items into subgroups based on size, and apply different packing 

procedures to each subgroup.  Miyazawa and Wakabayashi [1997] and [2000] improve 

those algorithms.  Li and Cheng [1992] study the on-line version of 3D-SPP. 

Martello et al [2000] analyze new bounds for 3D-BPP, and present both exact and 

approximation algorithms.  Their exact algorithm is based on a two-level decomposition 

idea, also used for 2D-BPP [Martello and Vigo 1998], and can be traced back to the 

original ideas of Gilmore and Gomory [1961].  Chen et al [1995] propose a different 

approach, a mixed integer program (MIP) for 3D-BPP, although only a small instance is 

solved. 

Heuristics for solving 3D-BPP are proposed by Ivancic et al (as reported by 

Bischoff and Ratcliff [1995]), Bischoff and Ratcliff [1995], and Terno et al [2000], among 

others.  Terno et al [2000] uses the 4-block heuristic as a subroutine in a new heuristic, the 

Parallel Generalized Layer-Wise Loading Approach (PGL-approach), to solve the Multi-

Pallet Loading Problem, a special case of 3D-BPP.  Current work in the field is represented 

in Eley [2002], Lins et al [2002b], and Pisinger [2002]. 
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E. COMMON VARIATIONS OF MD-BPP 

We analyze some of the most common variations of the general MD-BPP, with a 

discussion of the implications of some simplifications and restrictions.  These variations are 

usually related to the orientation of items (if items can be rotated and how), the types of 

patterns accepted when packing or cutting the items, and restrictions on the number of 

items being packed. 

We mainly bound the effects of these variations on large instances.  Therefore, let 

( )A L  be the number of bins used to pack a list L of items, when applying algorithm A.  Let 

( )OPT L  be the corresponding minimum number of identical bins necessary to pack the 

same list L. Define ( ) ( ) ( ) ,AR L A L OPT L≡  max{ ( ) | ( ) },n
A AR R L OPT L n≡ =  and 

lim sup .n
A n AR R∞

→∞≡   AR∞  measures the asymptotic worst case behavior of A, also known as 

the asymptotic performance bound for A.   

1. Orientation 

When positioning items inside a bin, it might be useful to rotate some items in order 

to obtain a better solution.  If two items, with the same shape and size, but with different 

orientations, are indistinguishable in the context of the problem in question, we say that any 

orientation is allowed.  If a different orientation causes an item to be treated as a different 

item, we say that the problem is oriented [Baker et al 1980].  It is also possible that the 

edges of the items must be loaded parallel to the bin's edges, and only 90º rotations are 

allowed.  This restriction is usually dictated by packing or cutting considerations, and is 

called the Orthogonal Packing Problem [Baker et al 1980]. 
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Figure I.2 Examples of unit squares packed in a larger square.   
All small squares have a unit side, and the larger square bins have the minimum known 
dimension to pack the given number of unit squares (after Friedman [2000]). 

Erdös and Graham [1975] show that even when packing unit squares in a larger 

square, it is possible to improve the solution by allowing rotation.  Figure I.2 (after 

Friedman [2000]) illustrates this situation.  In Figure I.2 (a), 10 squares are packed in a 

square with side3 1 2+ , and Figure I.2 (b) has 86 squares packed in a square with 

side (17 7) 2+ .  Without rotation, only 9, and 81, respectively, unit squares can be packed 

in the larger squares.  A packing of 10, or 86, unit squares in square bins with sides smaller 

than 3 1 2+ , and (17 7) 2+ , respectively, is unknown [Friedman 2000]. 

In most formulations, even 90º rotations are disallowed.  Although adopted in many 

packing and cutting problems, it is often only realistic when cutting pieces of wood, or 

glass, where the orientation of the pieces are important to the final product.  In such cases, 

pieces with the same dimensions, but different orientations, are considered as different 

pieces.   

Christofides and Whitlock [1977], besides requiring guillotine cuts in their tree 

search algorithm, also consider the orientation of the pieces to be fixed.  Baker et al [1980] 

and Chung et al [1982] assume that the orientation of the smaller rectangles cannot be 

changed in their approximation algorithms, and the asymptotic worst case bounds 

computed are valid only under that assumption.  Even more recent work, e.g., Christofides 

and Hadjiconstantinou [1995], Martello and Vigo [1998], Martello et al [2000], still require 

fixed orientation. 
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Except for the obvious conclusions drawn from the work of Erdös and Graham 

[1975], we do not find any literature that analyzes the effect of restricting item orientation 

on MD-BPP, when compared with solutions obtained without this restriction. 

Theorem I.1: Let A be an algorithm for 2D-BPP that requires all items to have fixed 

orientation, while OPT accepts 90º rotations.  Then 2.AR∞ ≥  

Proof:  Consider the problem of packing n rectangles with dimensions 3 × 2 inside bins 

with dimensions 5 × 3.  With fixed orientation, n bins are necessary.  But when allowing 

90º rotations, only n/2 bins are necessary.  Therefore, ( 2) 2n
AR n n≥ =  and lim 2n

n AR→∞ ≥  .  

Q.E.D. 

As shown above, algorithms considering only fixed orientation might obtain 

solutions that are twice as large as those obtained by orthogonal algorithms.  But allowing 

only 90º rotations may also substantially increase the number of required bins, as we see 

below. 

Theorem I.2: Let B be an orthogonal algorithm for 2D-BPP, i.e., an algorithm that 

provides only for 90º rotations, while OPT accepts any rotation.  Then 2.BR∞ ≥  

Proof: Consider the problem of packing 2n k= , k integer, rectangles with length 1 ε+  and 

width ε , with 1 kε = , in bins with corresponding dimensions 2 × 1.  In this case, because 

of the length of the items, we cannot rotate them 90º within the bin, and only k items are 

packed in each bin, with k bins being necessary.  But if we rotate the items as close as 

possible to the vertical, as in Figure I.3, for sufficiently small ε, 2 2k −  items are packed, 

and 2 1k +  bins are necessary ( 2k  bins with 2 2k −  items, and one bin with k items).  

Then lim ( 2 1) 2B kR k k∞
→∞≥ + = .  Q.E.D. 
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Figure I.3 Packing items rotated by an angle close to 90º. 
This Figure shows 2k – 2 items, with dimensions (1 + ε) × ε, and ε = 1/k, rotated by an 
angle close to 90º, packed in a bin with dimensions 2 × 1. 

In both cases above, if a third dimension is added, with value 1, for both items and 

bins, we observe the results above are also true for 3D-BPP algorithms.   

2. Pattern Restrictions 

The most common type of pattern restriction is guillotine cuts (Figure I.1).  Initially 

addressed by Gilmore and Gomory [1965], guillotine cuts have been further studied by 

several authors (e.g., Christofides and Whitlock [1977], Wang [1983], Oliveira and Ferreira 

[1990]).   

If we consider the problem of packing 4 × 3 items inside 7 × 7 bins, with 90º 

rotations without a guillotine cut restriction, 4 items can be packed in each bin, as shown in 

Figure I.4.  With guillotine cut restrictions, only 3 items can fit in each bin, increasing by 

1/3 the number of bins required.  Therefore, if C is an algorithm for 2D-BPP with guillotine 

cut restriction, then 4 3.CR∞ ≥  
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Figure I.4 Optimal packing with non-guillotine cuts allowed  of 4 3× items in a 7 7× bin.  
This layout is not a guillotine cut pattern, and there is no guillotine cut pattern that packs 4 
items. 

Another type of pattern restriction is the 1st-Order Non-Guillotine Cutting Pattern.  

Arenales and Morabito [1995] define 1st-Order Non-Guillotine Cutting Pattern, or 1st-

Order Pattern, as a pattern generated only by successive guillotine and/or 1st-order cuts.  A 

cut is a 1stOrder Non-Guillotine Cut, or 1st-order, if it produces five new rectangles 

arranged in such a way as not to form a guillotine cutting pattern, as shown in Figure I.5 

(a). 

Figure I.5 (b) shows an example of a 1st-order pattern, while Figure I.5 (c) shows an 

example of a pattern that is not a 1st-order pattern. 

We find 1st-order patterns provide optimal solutions to all PLP instances with less 

than 52 items (shown in Chapter IV).  Therefore, we explore some instances using items 

with three different sizes, and a total of seven items packed in each bin.  
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Figure I.5 Examples of 1st-order packing patterns. 
(a) represents a 1st-order cut, resulting in five rectangles; (b) is a 1st-order cutting pattern, 
because it can be obtained by recursively performing 1st-order and guillotine cuts; and (c) 
is an example of a cutting pattern of higher order. 

Theorem I.3: If D is an algorithm based on 1st-order patterns, then 27 25DR∞ ≥ . 

Proof: Consider the problem of packing 3n 29 × 11 items (I), 2n 28 × 23 items (II), and 2n 

41 × 5 items (III), in bins with dimensions 69 × 39.  Using the non 1st-order pattern shown 

in Figure I.6, it is possible to pack 7n items in n bins.  
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Figure I.6  Non 1st-order pattern used in the proof of Theorem I.3. 
This is a non 1st-order packing pattern, with three 29 × 11 items (I), two 28 × 23 items (II), 
and two 41 × 5 items (III), in a bin with dimensions 69 × 39.  

If only 1st-order patterns can be used, then this optimal pattern is infeasible and we 

must investigate other feasible patterns.  After verifying that a pattern is feasible, the 

decision on how many bins to fill with a given pattern depends only on how many instances 

of each item are present in the pattern.  If two patterns have the same number of instances 

of each item, then they are considered equivalent, even if the arrangement is distinct.  We 

only consider patterns that are maximal, in the sense that no additional items can be packed 

in the bin.  Table I.1 presents the maximal feasible 1st-order patterns in the problem.  The 

columns correspond to different patterns; the rows to items; and the entries are the number 

of copies of each item present in each pattern. 
Patterns 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

I 7 6 5 5 4 3 3 3 2 2 2 1 1 1
II 0 0 1 0 1 2 1 0 2 1 0 3 2 0
II 1 2 1 3 3 1 3 5 2 5 7 0 4 7

Table I.1 Packing patterns used in the proof of Theorem I.3. 
Columns correspond to different 1st-order patterns, the rows correspond to different items, 
and the entries are the number of copies of each item present in each pattern.  The column 
numbered 1 corresponds to a pattern with seven items of type I, and one item of type III. 

A linear relaxation of the problem of selecting the best set of 1st-order patterns to 

minimize the number of bins requires 4 25n bins with pattern 5, 18 25n  bins with pattern 

6, and 5 25n bins with pattern 13.  Because a linear relaxation provides a lower bound on 
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the solution for the integer program, at least 27 25n  bins are required, and 27 25DR∞ ≥ .  

Q.E.D. 

The last type of pattern restriction considered in this dissertation is the requirement 

of connectivity of items of the same type.  In 2D-BPP, when connectivity is required, all 

instances of the same item in a bin must be packed together, i.e., they must share a side.  

George and Robinson [1980] “choose a box type and fill as many complete columns” as 

possible.  Terno et al [2000] also require connectivity.  

Theorem I.4: If E is an algorithm requiring connectivity, then 4 3.ER∞ ≥  

Proof: In Figure I.7 (a) we observe the optimal pattern used when packing 2n 3 3×  items 

and 2n 4 2×  items in 7 5×  bins, if connectivity is not required.  In this case, n bins are 

necessary.  But if connectivity is required, an optimal solution uses n bins packed with the 

pattern in Figure I.7 (b), and 3n  bins with a pattern like Figure I.7 (c).  Therefore, 

4 3ER∞ ≥ .  Q.E.D. 

 

Figure I.7 Example of packing layouts of 2n 3×3 items and 2n 4×2 items in 7× 5 bins. 
In (a) connectivity is not required, but in (b) and (c) connectivity is required. 
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F. COMPLEXITY OF MD-PP 

Garey and Johnson [1979, pp. 124-127] show that the one-dimensional bin packing 

problem (1D-BPP) is NP-complete in the strong sense.  Because the one-dimensional 

problem can be transformed into higher dimensional cases by adding extra, fixed 

dimensions, MD-BPP is also strongly NP-complete.  The above transformation does not 

apply to some of the special cases of MD-BPP, and results concerning the complexity of 

these cases rely on other approaches.  As an example, if the items or bins are square, then 

the transformation is not straightforward, because fixing one of the sizes would also fix the 

other, turning it into a trivial problem, at least for orthogonal MD-BPP.  

Li and Cheng [1989] show that 2D-KP remains strongly NP-complete when 

packing squares in a rectangular bin, or packing rectangles into a square bin.  Leung et al 

[1990] prove that packing squares inside a square bin also remains strongly NP-complete.  

But their proof, in which the 3-Partition Problem [e.g., Garey and Johnson 1979] is 

transformed into a 2D-KP, requires a large number of different size square items.  Because 

the orthogonal problem with only one square size is trivial, and the general cases are 

strongly NP-complete, there must be a number of distinct sizes, greater than 1, where the 

problem becomes hard. 

The transformation of 1D-BPP into MD-BPP helps to prove complexity results for 

the latter, but it does not directly offer insight into the real difficulties of solving 

multidimensional problems.  In the 1D-BPP, the solution is given by partitioning the set of 

items into subsets, with each subset assigned to a bin.  The only requirement is that the sum 

of the length of the items in each subset does not exceed a given bound, the capacity of the 

bin.  Because addition is commutative, the order in which the items are packed is irrelevant.  

This is easily observed when considering the one-dimensional version of PLP.  If the bin 

has length X and the item length l, then the number of items that can be packed is X l   . 

In the multi-dimensional case, even when the subsets are given, it is still necessary 

to verify the feasibility of packing the items.  To verify feasibility, we must solve a MD-

KP, with the value of each item given by its area.  This MD-KP, alone, is NP-complete.  



20 

The solution of MD-BPP must include a partition of the items into subsets assigned 

to each bin, and the arrangement, or packing pattern, of these items inside each bin.  The 

most common way to represent this arrangement is to assign each item to a position relative 

to some reference point in the bin.  For example, each item can be assigned a pair of 

coordinates (xi, yi), corresponding to the horizontal and vertical distance to the reference 

point in the bin.  If only normal patterns are considered, then the number of positions an 

item can take in the bin is finite, although usually large [Christofides and Whitlock 1977].  

Another approach to represent the arrangement is using Sequence Pairs [Murata et 

al 1995], where two ordered lists represent the relative position between pairs of items.  

Each of these two lists corresponds to permutations of {1,..., }n , where n is the number of 

packed items.  There are four possible relative positions between items andi j : j is to the 

right of i, i is to the right of j, j is above i, or i is above j.  

Graphs can also represent packing patterns (e.g., Biró and Boros [1984] and Lins et 

al [2002]).  The main problem with this approach is that different representations can lead 

to the same arrangement, as given by the coordinates of each item [Christofides and 

Hadjiconstantinou 1995].  This adds to the complexity of search algorithms, even when the 

number of solutions is small. 

If we consider only orthogonal problems with normal packing patterns, the 

decisions to solve MD-BPP can be divided in four main types: 

Partition: Which item goes in which bin?  The number of possible assignments 

increases as 2 I .  This decision is always present in MD-BPP, and the complexity can only 

be reduced by adding constraints on combinations of items that can be packed together in a 

bin. 

Order: After choosing a partition, an algorithm must select the order in which the 

items are packed, and the number of options goes up with the factorial of the number of 

items in the partition.  In PLP, because there is only one type of item, there is no ordering 

decision. 
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Orientation: Each rectangular item can have two distinct orientations in two 

dimensions, or up to six orientations in three dimensions.  Because each item can usually be 

rotated independently of the other, there are an exponential number of possibilities. 

Relative Position: After deciding the ordering and the orientation, it is still 

necessary to select the position of each item being packed relative to all items previously 

packed in the same bin.  The number of possible positions for placing an item may increase 

with the number of patterns that can be used with the items already packed, and the number 

of different patterns increases with the factorial of the number of items in the partition.  The 

complexity of this positioning is simplified by rules like “left-most downward” (e.g., 

Christofides and Hadjiconstantinou [1995]). 

Most heuristics and approximate algorithms in the literature reduce the size of the 

solution space by using a sorting rule to decide the ordering of items, fixing the orientation 

of the items, or packing items according to layers (e.g., Coffman et al [1980], Chung et al 

[1982], Li and Cheng [1990]). 

Although exact algorithms for most variations of MD-BPP have exponential run 

time, they can significantly differ in terms of complexity because of the way the solutions 

are represented.  For example, the algorithm for oriented 2D-SPP in Murata et al [1995], 

using sequence pairs, has complexity 8 2( ! )O n n  [Xu et al 1997], while the MIP analyzed by 

Chen et al [1995], when applied to oriented 2D-SPP, has complexity 2(2 )nO , where n is the 

number of items to pack. 

G. OUTLINE OF THE DISSERTATION 

This chapter introduces MD-BPP, MD-KP, PLP, and related problems. 

Chapter II reviews previous work on PLP, including a review on the state of the art 

of algorithms and bounding procedures.  In Chapter III, we define the Minimum Size 

Instance (MSI) of an equivalence class of PLP, and show that every class has one and only 

one MSI.  We also develop bounds on the dimensions of box and pallet in the MSI of a 

class, and show that a bound used for almost 15 years is incorrect.  Applying the newly 

developed bounds on the MSI dimensions, we present an algorithm to enumerate all 
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equivalence classes with up to 100 boxes per pallet.  Chapter IV presents new algorithms, 

both exact and heuristic, and bounding procedures for PLP.  

Chapter V introduces MD-KP with the description of some previous work and 

discusses a MIP for 2D-KP.  Chapter VI presents new algorithms for MD-KP, exact and 

heuristic, and compares the performance of these algorithms with others from the literature. 

Chapter VII reviews previous work on MD-BPP, presents an exact algorithm for the 

orthogonal MD-BPP, and describes a new heuristic for 2D-BPP based on ideas presented in 

Chapters IV and VI. 

Chapter VIII provides conclusions and suggestions for further research.  
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II. THE PALLET LOADING PROBLEM 

This chapter reviews previous work on one of the simplest variations of 2D-KP, 

known as the Pallet Loading Problem (PLP).  In this two-dimensional problem, all items, or 

boxes, to be packed have identical dimensions; there is only one bin, or pallet.  Boxes may 

be rotated 90º and must be packed with edges parallel to the pallet's edges, i.e., the packing 

must be orthogonal.  Using the classification of Dyckhoff [1990], PLP is classified as 

2 / / / .B O C   

Manufacturers must solve PLP when selecting the best arrangement of identical 

rectangular boxes, with a “this side up” restriction, on a rectangular pallet.  Even without 

the “this side up” restriction, operational considerations may dictate the use of vertical 

layers with the same height.  Considerations regarding stability and safety of the boxes 

imply the use of orthogonal packing, e.g., Dowsland [1987] and Nelissen [1995].  PLP is 

also present in some cutting stock and floor design settings. 

Although simple when compared with 2D-KP, the complexity of PLP is still 

unknown.  The one-dimensional version of this problem can be solved in constant time, but 

the same is not true for higher dimensions.  The emphasis in most of the literature has been 

on finding good heuristic solutions.  In the following sections, we present the problem 

formulation, define some concepts related to PLP, briefly review select PLP research, 

discuss the complexity of PLP, and survey bounding procedures and heuristics in the 

literature. 

A. PROBLEM FORMULATION AND DEFINITIONS 

1. PLP Problem Formulation 

To be consistent with the PLP literature, we define some new notation.  In each 

instance of PLP, identified by a quadruple (X, Y, a, b), we have a rectangular pallet with 

length X and width Y ( X Y≥ ), and a rectangular box with length a and width b ( a b≥ ).  

We can assume, without loss of generality, that X, Y, a, b are positive integers [Bischoff 

and Dowsland 1982]. We also assume that at least one box can be packed in the pallet.  

Thus, X a≥  and Y b≥ . 
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The optimization version of PLP is: What is an orthogonal arrangement of the boxes 

on the pallet that yields the maximum number of boxes packed?  

The decision version of PLP is: Given an instance of PLP, is there an orthogonal 

arrangement of N boxes on the pallet? 

Some authors (e.g., Nelissen [1995], Scheithauer and Terno [1996]) formulate PLP 

in terms of the maximum number of boxes that can be packed on the pallet, without 

explicitly considering the arrangement of the boxes.  The main difference between 

considering the arrangement or not is that it could be possible to develop an algorithm that 

computes the maximum number of boxes packed without defining the arrangement.  If an 

arrangement is given, it is straightforward to calculate the number of boxes packed.  On a 

planning level, we only need to know how many boxes can be loaded on each pallet, but at 

the operational level we must know how to arrange them.  Because the complexity involved 

in solving PLP in either approach is presently unknown, we select the operational level. 

2. PLP Definitions 

We define an H-box (V-box) as a box with its largest dimension oriented 

horizontally (vertically).  Given an instance ( , , , )X Y a b′ ′ ′ ′  of PLP, ( , , , )N X Y a b′ ′ ′ ′  is the 

number of boxes in an optimal packing, ( , , , ) ( , , , )W X Y a b X Y N X Y a b a b′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ ∗ − ∗ ∗  

is the wasted area in an optimum packing, ( , , , )UN X Y a b′ ′ ′ ′  is an upper bound on 

( , , , )N X Y a b′ ′ ′ ′ , and ( , , , , )EW N X Y a b X Y N a b′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ ∗ − ∗ ∗  is the waste encountered 

when packing N ′  boxes for ( ) ( )N X Y a b′ ′ ′ ′ ′≤ ∗ ∗   .  Also xA X a′ ′ ′≡    , yA Y a′ ′ ′≡    , 

xB X b′ ′ ′≡    , and yB Y b′ ′ ′≡    . 

We define a block as a rectangular subset of a packing arrangement such that no box 

is only partially included in the rectangle.  In other words, a block partitions the boxes of a 

packing arrangement into two groups, those inside and those outside the block.  If all boxes 

in a block have the same orientation (V-boxes or H-boxes), then the block is called a 

homogeneous block [Scheithauer and Terno 1996].  A homogeneous block of V-boxes (H-

boxes) is a V-block (H-block). 

A hollow block (Figure II.1) contains boxes in one orientation, across one diagonal 

of the block, surrounded by boxes in the other orientation.  Each homogeneous block 
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located in the diagonal of the pattern is called a diagonal element block, or diagonal 

element.  All boxes with a different orientation than those in the diagonal elements are 

located in main element blocks, or main elements.  The unused regions inside the block are 

called holes.  The hollow block is also called diagonal block. 

 

Figure II.1 Feasible packing for the class of instance (85, 66, 8, 7).   
Diagonal elements are identified with the letter D.  Main elements are identified with the 
letter M. 

3. Efficient Partitions and Equivalence Classes 

The idea of efficient partitions [Bischoff and Dowsland 1982] comes from the 

observation that some problems, with different dimensions, possess the same arrangement 

of the boxes in an optimal solution.  The arrangement depicted in Figure II.2 is an optimal 

arrangement to the instance (22, 16, 5, 3).  Shaded regions indicate unused (wasted) areas 

of the pallet.  But the same arrangement is optimal to instances (30, 22, 7, 4) and (50, 36, 

11, 7), among an infinite number of instances. 
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Figure II.2 Optimal arrangement for instances (22, 16, 5, 3), (30, 22, 7, 4), (50, 36, 11, 7), 
and all instances within the same equivalence class. 

Now, if we draw a vertical or horizontal line across a loaded pallet, as in Figure II.3, 

it crosses a number of boxes.  If the dimension of a box crossed by the line is a, we call the 

segment of the line contained within the box an a-segment.  Otherwise, we call it a b-

segment.  The sum of the segments crossed by a vertical or horizontal line cannot exceed 

the related dimension of the pallet.  

If we consider the possible combinations of a-segments and b-segments obtained 

for each dimension independently, we can define a set of inequalities to be satisfied for the 

arrangement to be feasible, i.e., a set of inequalities that ensure the combination of H-boxes 

and V-boxes does not exceed either the length or width of the pallet.   

Let ( , )n m  denote an ordered pair of nonnegative integers satisfying 

 Sbman ≤∗+∗  (II.1)

for a pallet dimension S, which could be X or Y.  Then, the ordered pair ( , )n m  is called a 

feasible partition of S, i.e., a combination of segments of lengths a and b not exceeding the 

dimension S is a feasible partition of S. The set of all feasible partitions of the dimension S 

for boxes of dimensions a b×  is denoted by ( , , )F S a b . 
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Figure II.3 Example of identifying segments in a loaded pallet.  
The horizontal line H H ′−  crosses 4 boxes, two across the a dimension (two a-segments) 
and two across the b dimension (two b-segments).  The vertical line V V ′−  crosses 5 boxes, 
one across the a dimension and 4 across the b dimension. 

If n and m also satisfy 

 bbmanS <∗−∗−≤0  (II.2)

then ( , )n m  is called an efficient partition of S [Bischoff and Dowsland 1982].  We cannot 

increase an element of the ordered pair ( , )n m  in an efficient partition without becoming 

infeasible.  For a pallet dimension S, the set of efficient partitions of S, denoted 

by ( , , )E S a b , is defined to be the set of all feasible partitions ( , )n m  satisfying  

 {0,1, , }, and ( )n S a m S n a b∈ = − ∗      … . (II.3)

Dowsland [1984] shows that if two instances of PLP possess the same set of 

efficient partitions for both the pallet width and length, then both instances share the same 

set of optimal arrangements.  This defines a relation in the set of instances of PLP, which is 

reflexive, symmetric, and transitive.  Therefore, the set of instances of PLP can be divided 

into equivalence classes, based on the set of efficient partitions.  If a solution is known for a 

class representative, then this solution can be used on any other instance in the class.  
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Because multiplying all dimensions by an integer produces a new instance in the same 

class, it is easy to see that each class contains infinitely many instances. 

If, in addition, n and m satisfy 

 ,n a m b S∗ + ∗ =  (II.4)

then (n, m) is called a perfect partition of S [Dowsland 1984].  The set of all perfect 

partitions of Y is denoted ( , , )P Y a b .  There is a corresponding set for X.  In general, each of 

these sets can be empty, but the instance of an equivalence class with minimal dimensions 

contains at least one perfect partition for each dimension, X and Y [Dowsland 1984].  This 

is easily observed if we consider an arbitrary instance without a perfect partition for a given 

dimension.  In this case, we can reduce the corresponding dimension of the pallet without 

altering the set of efficient partitions.  This implies that the new instance, with a smaller 

dimension, also belongs to the same class. 

B. BACKGROUND ON PLP 

In this section, we review some previous work on PLP; a substantial fraction of this 

work deals with developing heuristics and identifying upper bounds for PLP.  

Barnett and Kynch [1967] are probably the first authors to publish a result regarding 

PLP.  They consider the “problem of optimal dissection of a large rectangular plane area 

into smaller rectangles having unit width and integral length so as to obtain the least 

waste.”  Their main result is that if all boxes have equal integral lengths, then the maximum 

number of boxes packed can be computed in constant time.  Barnes [1979] uses the idea 

that packing patterns of a b×  boxes can be represented by patterns of 1a×  or 1b×  boxes, 

to compute a lower bound on the wasted area present in an optimal packing. 

Brualdi and Foregger [1974] extends the result obtained by Barnett and Kynch 

[1967] to higher dimensions, and consider the case when the a b×  box has harmonic 

dimensions, i.e., b divides a.  

Dowsland [1987a] proposes an exact algorithm for PLP based on a graph-theoretic 

model of the problem.  In her paper, she claims, without proof, that PLP is NP-complete.  

The same year, she investigates a combined database and algorithmic solution [1987b], and 

claims to have generated all equivalence classes satisfying a set of restrictions on the pallet 
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and box dimensions (enumerating some equivalence classes more than once).  Dowsland 

[1990] also investigates the situation in which there are additional restrictions on loading 

patterns, as when robots are used in the loading process.   

A working paper by Nelissen [Nelissen 1993] discusses the state of the art for PLP.  

More recently, Nelissen [1995] reports a bounding procedure based on a linear program 

(LP) and use of structural information about the problem. 

 Tarnowski et al [1994] propose a polynomial time algorithm for the guillotine cut 

version of PLP. 

The G4-Heuristic [Scheithauer and Terno 1996] solves 99% of the randomly 

generated test instances they investigate, and solves all the instances in a set defined by 

Dowsland [1987a].  

Bhattacharya et al [1998] propose a new algorithm that uses a Maximal Breadth 

Filling Sequence.  This tree search algorithm is based on packing not individual boxes, but 

a combination of boxes corresponding to an efficient partition of a partial problem, at each 

step of the search.  Although they claim the algorithm is exact, we provide a counter-

example in the next chapter and show the errors in their proof.    

C. COMPLEXITY OF PLP 

PLP, regarded as 2D-KP, would be in the class of NP problems.  In this case, the 

input would include a list with the repeated dimensions for each box.  So, if we are trying to 

pack N boxes, the list has 2N values.  But by “simplifying” the problem, we also simplified 

the input requirements.  As seen above, every PLP instance can be defined using only four 

integers, and a “reasonable” encoding scheme would require 2(log )O X as input size.  If 

every solution certificate produced by an algorithm, i.e., the arrangement of the boxes on 

the pallet, is represented by the assignment of pairs of planar coordinates to each box, 

which may require 2(( / ) )O X b values, it is easy to see that the certificate size is not 

bounded by a polynomial in the input size, and the problem would not even be a member of 

NP [Cook et al 1998, p. 310].  Nelissen [1993] reaches the same conclusion.  
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While the Guillotine PLP is solvable in 2
2 2(log log )O X a∗  time [Tarnowski et al 

1994], no similar result is available regarding the complexity of the non-guillotine case. 

A polynomial-time algorithm for the non-guillotine PLP, if one exists, must encode 

the packing arrangement in a certificate with size bounded by a polynomial in log2 X.  If it 

could be proven that no such encoding scheme exists, then it would be possible to show 

that the non-guillotine PLP is not in NP.  On the other hand, the search for such an 

encoding scheme might lead to identifying a polynomial-time algorithm. 

One possible approach for encoding the packing arrangement in a certificate with 

size bounded by a polynomial in the input size would be to represent the solution as a 

combination of blocks, including only boxes with the same orientation (only H-boxes or V-

boxes), or other patterns that could be created in polynomial time.  Some of the common 

heuristics for solving PLP involve the use of 1, 2, 4, or more blocks of boxes with the same 

orientation, or a special combination of blocks [Nelissen 1993].  In this case, the planar 

coordinates of each block, together with its dimensions, would define the solution 

arrangement.  If the number of such blocks required to represent an optimal solution could 

be bounded by a polynomial in log2 X, then it would be possible, at least, to show that PLP 

is in NP.  If it could be shown that the algorithm producing those blocks also had 

polynomial time complexity, than we could show PLP to be in the class P. 

D. UPPER BOUNDS ON THE OPTIMAL SOLUTION 

The existence of a tight upper bound on the maximum number of boxes that can be 

packed in an instance of PLP is useful both in heuristics, to verify optimality, and for exact 

algorithms, to enable bounding strategies that reduces the solution space.  This dissertation 

introduces some new bounds in Chapter IV.  In this section, we review some previously 

published bounds. 

1. Simple Bounds 

A simple and intuitive bound is obtained by taking the integer part of the ratio of the 

areas of pallet and box, ( ) ( )X Y a b∗ ∗   .  We call this the Area Ratio (AR) Bound.  
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Although simple to compute, Smith and De Cani [1980] and Dowsland [1985] report that it 

is equal to the optimal solution in less than 15% of randomly generated test instances. 

Another intuitive bound is obtained by multiplying xB , the maximum number of 

boxes that can be placed in any horizontal row, and yB , the maximum number of boxes in a 

vertical column, obtaining X b Y b∗       .  If b is relatively close to a, then this Maximum 

Product (MP) Bound can outperform the AR bound.  The instance (23, 23, 5, 4) is an 

example of this situation, with an AR bound (23 23) /(5 4) 26∗ ∗ =    and MP bound 

23 4 23 4 25.∗ =        

2. Bound Using a Perfect Partition Equivalent of the Pallet  

If an instance of PLP presents perfect partitions in both dimensions, the reduction of 

the pallet dimensions to the largest efficient partition can significantly improve the 

performance of the area ratio bound [Dowsland 1984].  In this situation, the dimensions of 

the pallet are not a positive linear combination of the box’s dimensions, and there is always 

some wasted area in each dimension of the pallet.  If we compute the minimum waste 

observed in each pallet dimension, and reduce the dimensions accordingly, the new bound 

is much tighter, being “correct for over 70% of common box and pallet dimensions” 

[Dowsland 1984]. 

Let 
ˆˆ( , ) ( , , )

ˆ ˆˆ ˆ( , , ) max { }
i j E S a b

G S a b i a j b
∈

= ∗ + ∗ .  We call ˆˆ( , , )G S a b  the Perfect Partition 

Equivalent function. Given an instance ˆˆ ˆ ˆ( , , , )X Y a b  of PLP, the reduced dimensions of the 

pallet are given by  

 * ˆˆ ˆ( , , )X G X a b= , (II.5)

and * ˆˆ ˆ( , , ).Y G Y a b=  (II.6)

For instance (38, 38, 12, 5), the area ratio bound computed directly is 24.  After reducing to 

the usable dimensions to * 37X =  and * 37Y = , we obtain the instance (37, 37, 12, 5), with 

an exact bound of 22. 
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3. Minimizing the Area Ratio Bound on the Equivalence Class 

Selecting an instance in the equivalence class that minimizes the area ratio bound 

may provide a tighter bound.  Because all instances in an equivalence class can be packed 

in the same way, with the same optimum number of packed boxes, the bound computed for 

one instance is valid for all instances.  Proposed by Dowsland [1984], this approach 

produces exact bounds in at least 92% of her 5,000 randomly generated test cases.  We call 

this bound the Minimum Area Ratio (MAR) Bound. 

The selection of an instance that minimizes the area ratio bound can be stated as a 

nonlinear integer-programming problem.  Given instance ˆˆ ˆ ˆ( , , , )X Y a b , we formulate the 

minimization problem as 

( ) ( )Min X Y a b∗ ∗             

subject to 

 0,X i a j b− ∗ − ∗ ≥  ˆˆ ˆ( , ) ( , , )i j E X a b∀ ∈ , (II.7)

 ( 1)* 0,i a j b X∗ + + − >  ˆˆ ˆ( , ) ( , , )i j E X a b∀ ∈ ,   (II.8)

 ˆ ˆ( 1) 0X a a X  + ∗ − >  ,  (II.9)

 0,Y f a g b− ∗ − ∗ ≥  ˆˆ ˆ( , ) ( , , )f g E Y a b∀ ∈ , (II.10)

 ( 1) 0,f a g b Y∗ + + ∗ − >  ˆˆ ˆ( , ) ( , , )f g E Y a b∀ ∈ , (II.11)

 ˆ ˆ( 1) 0Y a a Y  + ∗ − >  ,  (II.12)

 , , ,X Y a b Z +∈ .  

The nonlinear objective function, together with integrality constraints on variables, 

can make this minimization problem hard to solve, but Dowsland [1987] and Nelissen 

[1993] show how to convert this problem to a simpler one. 

The first step in the conversion is to allow the variables to take continuous, 

nonnegative values, and to consider only a normalized version of the problem with the box 

having width b always equal to 1.  If the optimal solution has fractional rational values, we 

can scale up to obtain only integral values.  If decision variables in the optimal solution are 

irrational, we can obtain a rational solution that is arbitrarily close [Nelissen 1993]. 
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The second step is to recognize that the length and width of the pallet, in the optimal 

solution, is given by a linear function of the box dimensions, with the coefficients given by 

a pair of perfect partitions.  This way, given a pair of perfect partitions for length and width, 

say * *( , )i j and ( )* *,f g , the objective function can be rewritten as a function of the box 

length only: 
* * * * * *

* * * * * *( ) ( )( ) ( ).i a j f a g j gAR a i f a i g j f
a a

∗ + ∗ ∗ + ∗
= = + ∗ ∗ + ∗ + ∗      (II.13) 

The first and second derivatives are, respectively,  

2( ) , andj gAR a i f
a

∗ ∗
∗ ∗∗′ = − + ∗      (II.14) 

3

2( ) .j gAR a
a

∗ ∗∗ ∗′′ =       (II.15) 

Given a pair of efficient partitions, ( )AR a  is a convex function for positive values 

of a , and the function attains the minimum value at an interior point where ( ) 0AR a′ = , or 

at the boundary of the feasible region.  As Nelissen [1993] demonstrates, the domain of a  

can be divided into intervals where one pair of efficient partitions dominates all others.  As 

we increase the value of a  from its minimum value of one, we move from one pair of 

efficient partitions to another.  The algorithm verifies each interval sequentially until the 

instance with minimum area ratio is identified.  The feasible region has an open boundary, 

and if the objective function attains a minimum value at this open boundary, we can 

produce an instance with area ratio arbitrarily close to the minimum value, but still 

belonging to the equivalence class. 

One example of a class where the objective function attains a minimum value at the 

open boundary is the class of instance (57,44,12,5) .  This instance has 41.8AR = .  When 

minimizing over the equivalence class, the minimum is obtained at instance (23,18,5,2) , 

with 41.4AR = .  But the Y-partition (0,9)  is feasible for (23,18,5,2) , and infeasible for 

(57,44,12,5) .  Therefore, (23,18,5,2)  belongs to a different class, but instance 

(23057,18044,5012,2005)  belongs to the same class as (57,44,12,5) , and has 

41.401AR = . 
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4. Barnes’ Bound 

Barnes [1979] proposes a bound based on patterns with a b×  boxes being 

represented by patterns of 1 or 1a b× ×  boxes.  Because the solution to problems with unit 

width is easily obtained [Barnett and Kynch 1967], Barnes computes the wasted area 

obtained when packing only 1a ×  or only 1b×  boxes, and uses the greater wasted area as a 

lower bound on the wasted area of the original problem, producing an upper bound on the 

number of boxes packed.  Barnes also proves that if the dimensions of the pallet are 

“sufficiently large” then the bound is exact. 

If A is the wasted area in an optimal packing of a × 1 boxes, modar X a=  and 

modas Y a= , then  

 min{ , ( ) ( )}.a a a aA r s a r a s= ∗ − ∗ −  (II.16)

     

The wasted area in an optimal packing of b × 1 boxes, B, is computed in a similar 

way.  In any optimal packing of a × b boxes, the wasted area, ( , , , ),W X Y a b satisfies the 

following system of equations [Barnes 1979] 

 ( , , , ) max{ , }W X Y a b A B≥ , (II.17)

 ( , , , ) mod modW X Y a b a A a= , and (II.18)

 ( , , , ) mod modW X Y a b b B b= . (II.19)

An example of the application of this bound is the instance (22,18,4,3) . The area 

ratio bound is (22 18) /(4 3) 33∗ ∗ =   , with zero wasted area. The calculations required to 

apply Barnes’ bound are 

 2, 2,a ar s= =  min{4,4} 4,A = =   

 1, 0,b br s= =  min{0,6} 0,B = =   

 (22,18,4,3) max{4,0} 4,W ≥ =    

 (22,18,4,3) mod 4 4 mod 4, andW =   

 (22,18,4,3) mod 3 0mod 3.W =    

 

The minimum value satisfying the system of equations is 12. Therefore, the bound 

can be reduced to ((22 18) 12) /(4 3) 32∗ − ∗ = . 
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5. An LP Bound 

Nelissen [1995] reports that in 1987 Isermann presented a method for computing 

upper bounds on the number of boxes in the optimal packing by solving an LP.  In this 

approach, the pallet is partitioned into vertical and horizontal strips of unit width.  The 

horizontal strips are called rows, and the vertical strips columns.  Given a normal packing 

pattern (left-bottom justified, as defined in Chapter I) corresponding to an instance (X, Y, a, 

b) of PLP, the number of a  and b  segments in each strip is recorded as an ordered pair.  

Figure II.4 depicts an optimal arrangement for instance (8,5,3,2)  (after Nelissen [1995]) 

that demonstrates the use of this notation.  For each pair of integers corresponding to each 

row and column, the first integer indicates the number of a-segments in that unit strip.  The 

second integer is the number of b-segments. 

 
Figure II.4 Partitions observed on a packing of instance (8, 5, 3, 2).  
For each pair of integers corresponding to each row and column, the first integer indicates 
the number of a-segments in that unit strip.  The second integer is the number of b-
segments.  As an example, the row assigned with (1,2) contains one a-segment and two b-
segments.  Figure after Nelissen [1995]. 

Let the integer variable ,i jx count the number of times the feasible partition (i, j) of X 

is observed in a solution.  In our example above, 1,1x = 1, 1,2x = 1, 2,1x = 3, and ,i jx = 0 for all 

other partitions in (8,3,2).F  Y partitions are counted in ,f gy .  In this example, 0,2y = 4, 

1,1y = 4, and ,f gy = 0, for all other partitions in (5,3,2).F   

Each V-box in the solution is counted in a  rows and in b  columns, while each H-

box is counted in b  rows and a  columns.  Any given 1 1×  square, aligned with the grid 

and occupied by a box, is counted twice, once in the row and another in the column.  The 
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product ,i ja i x× ×  gives us the number of 1 1×  squares belonging to H-boxes counted in 

rows with i  H-boxes and j  V-boxes.  If we add over all feasible partitions, we obtain the 

total number of unit squares, or total area, occupied by H-boxes in the packing.  If we 

divide by the area of an item, a b∗ , we obtain the total number of H-boxes in the packing.  

Also, the product ,f gb g y∗ ∗  represents the number of 1 1×  squares of H-boxes in a column 

with f V-boxes and g H-boxes, and the sum over all feasible partitions also returns the area 

occupied by H-boxes.  Therefore, the result of both summations must be the same.  A 

similar reasoning applies to the V-boxes.  Additionally, we relax the integrality constraint 

on ,i jx and ,f gy  and then formulate the problem as  

VHZMax +=  

subject to 

 ,
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 ),,(),(,0, baXFjix ji ∈∀≥ , and (II.26)

 ),,(),(,0, baYFgfy gf ∈∀≥ . (II.27)

The integer part of H, as defined in (II.20), counts the number of H-boxes, while the 

integer part of V, in (II.21), counts the number of V-boxes.  Constraints (II.22) and (II.23) 

require that the number of horizontal and vertical strips be equal to the vertical and 

horizontal dimensions, respectively.  Constraints (II.24) and (II.25) enforce the area 

occupied by H-boxes and V-boxes to be the same, as discussed above.  The integer part of 

Z is an upper bound on the number of boxes that can be packed in the pallet. 
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Nelissen [1995] and Naujoks (as reported by Nelissen [1995]) study and develop 

improvements to this method, with Nelissen reporting that his proposed procedure yields 

the optimal number of boxes packed in 99.86% of 20,000 randomly generated test instances 

with at most 50 boxes, and 99.81% in an additional 20,000 problems, with between 51 and 

100 boxes. 

As we shall see in the next chapter, this record is surpassed by a combination of 

new bounds developed in this dissertation. 

E. SIMPLE HEURISTICS FOR PLP 

Nelissen [1993] reviews the literature on PLP and furnishes most references in this 

section. 

Most heuristics developed so far are based on the idea of combining V-blocks and 

H-blocks.  As the possible number of blocks in the solution increases, better solutions can 

be obtained with the development of more complex heuristics, at additional computational 

cost.  A tight upper bound on the number of blocks necessary in the optimal solution for 

every PLP is still unknown [Scheithauer and Terno 1996]. 

Some authors use a sample set of randomly generated test problems to measure the 

performance of their algorithms, usually observing some set of restrictions on pallet and 

box dimensions.  The most common set of restrictions is first proposed by Dowsland 

[1984] and has been used by other authors, e.g., Nelissen [1993], Scheithauer and Terno 

[1996], Bhattacharya et al [1998], Morabito and Morales [1998].  These restrictions are 

1 2X Y≤ ≤ ,       (II.28) 

1 4a b≤ ≤ , and     (II.29)  

1 ( ) ( ) 50X Y a b≤ ∗ ∗ ≤ .    (II.30) 

Nelissen [1995] and Naujoks (as reported by Nelissen [1995]) also investigate instances 

with the area ratio in the range 

51 ( ) ( ) 100X Y a b≤ ∗ ∗ ≤ .    (II.31) 

We enumerate all equivalence classes with AR bound up to 100 boxes, and to solve 

one instance in each class. 
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1. One-Block Heuristic 

In the one-block heuristic, all boxes are packed with the same orientation.  The 

decision on which orientation to use is based on constant-time computations.  If 

x y y xA B A B∗ > ∗ , then an H-block with x yA B∗  H-boxes is used, divided into xA  columns 

and yB  rows.  Otherwise, a V-block with y xA B∗  V-boxes is used, with xB  columns and 

yA  rows of boxes.  

Although it is a very simple heuristic, we find that it optimally solves more than 

58% of all problems satisfying restriction (II.31).  An optimal arrangement obtained with 

the one-block heuristic is depicted in Figure II.5. 

 
Figure II.5 Optimal arrangement for the class of instance (22, 14, 7, 3) provided by the 
one-block heuristic.  
In this example, 3, 2, 7, 4x y x yA A B and B= = = = . 

2. Two-Block and Three-Block Heuristics 

All n-block heuristics, for 2n ≥ , are based on selecting a size for the first block, 

then for the second block, until the last block is packed.  If unused regions exist, then the 

heuristic tries packing in these regions. 

In the two-block heuristic, for each partition ( , )n m  in ( , , )E X a b , we generate two 

blocks: one H-block with n columns and yB  rows, and one V-block with m columns and 

yA  rows.  We also generate two blocks, in a similar way, for each partition ( , )n m  in 

( , , )E Y a b , and pick the best solution, i.e., the solution with the most packed boxes.  Figure 
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II.6 shows an optimal arrangement for the class of the instance (21,11,4,3)  obtained with 

the two-block heuristic. 

 
Figure II.6 Optimal arrangement for the class of instance (21, 11, 4, 3) obtained with the 
two-block heuristic. 
This pattern corresponds to the efficient partition (2, 1) in (11,4,3)E , with 5xA =  and 

7xB = . 

In the three-block heuristic, after computing the results for each efficient partition, 

if there is an unused region that is large enough to fit another block, then the boxes in this 

third block are added to the solution corresponding to that partition, before selecting the 

best solution.  Figure II.7 is an example of an optimal arrangement provided by the three-

block heuristic. 

 
Figure II.7 Optimal arrangement for the class of instance (19, 13, 4, 3) computed with the 
three-block heuristic.  
A third block with two V-boxes is added to the initial solution of the two-block heuristic. 
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3. Four-Block and Five-Block Heuristics 

The four-block heuristic, proposed by Steudel [1979] and Smith and de Cani 

[1980], allocates a block with fixed orientation to each of the four corners of the pallet, as 

shown in Figure II.8.  Blocks andI III  are H-blocks, while blocks II and IV are V-blocks. 

 
Figure II.8 Orientation of items within blocks in the four-block heuristic.  
Blocks I and III are H-blocks, and blocks II and IV are V-blocks. 

Bischoff and Dowsland [1982] propose an algorithm using four nested loops, based 

on efficient partitions, to compute the dimensions of the four blocks.  If there is still some 

unused area after picking dimensions of the four blocks, the algorithm tries to fit a fifth 

block with the best orientation for the specific instance.  This is the five-block heuristic.  

Let ( , )i iL W  be the dimensions, and i i iC L W= ∗ , the area of the thi  block, for 

1, 2,3,4,5i = .  The pseudocode for the five-block heuristic is:  

For each 1 1( , ) ( , , )n m E X a b∈ , 1 1 2 1,L n a L m b← ∗ ← ∗  

For each 2 2( , ) ( , , )n m E Y a b∈ , 1 2 4 2 1 1 1, ,W n b W m a C L W← ∗ ← ∗ ← ∗  

For each 3 3( , ) ( , , )n m E X a b∈ , 3 3 4 3 4 4 4, ,L n a L m b C L W← ∗ ← ∗ ← ∗  

For each 4 4( , ) ( , , )n m E Y a b∈ , 3 4 2 4 3 3 3 2 2 2, , ,W n b W m a C L W C L W← ∗ ← ∗ ← ∗ ← ∗  

 If no blocks overlap, then 

Compute 5 5 5, , andL W C  

If 1 2 3 4 5C C C C C+ + + +  is larger than the previous best, save this solution. 
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Verifying that there is an overlap among the four initial blocks and computing the 

dimensions of the fifth block can be performed at the same time, because both answers 

depend on the same set of conditions: 

 

If 1 3L L X+ >  then  

If 1 3 ,W W Y+ > then there is overlap 

else 5 1 3( ),W Y W W= − +  and 5 2 4( )L X L L= − +  

else if 2 4L L X+ > then 

If 2 4 ,W W Y+ >  then there is overlap 

else 5 2 4( ),W Y W W= − +  and 5 1 3( )L X L L= − + . 

 

The final step in this heuristic computes the usable area C5 of the fifth, i.e. central, 

block.  This is performed by applying the one-block heuristic to instance (L5, W5, a, b).  

Figure II.9 displays an optimal arrangement to the class of instance (14, 14, 5, 2) obtained 

with the five-block heuristic.  

  

 
Figure II.9 Optimal arrangement obtained with the five-block heuristic for the class of 
instance (14, 14, 5, 2). 
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4. Diagonal and Angle Block Heuristics 

Nelissen [1993] describes a family of diagonal heuristics, which generate diagonal 

block patterns, as in Figure II.10.  

 

Figure II.10 Examples of optimal packing patterns generated with diagonal block 
heuristics. 
(a) is a simple diagonal solution for the class of instance (15, 13, 4, 3); (b) is a multiple 
diagonal solution for the class of instance (22, 10, 4, 3); and (c) is a supplemented 
diagonal solution for the class of instance (15, 10, 4, 3). 

If the solution to a problem has only one box in each diagonal element, he calls the 

pattern a simple diagonal block solution.  If the diagonal elements are composed of more 

than one box, side by side, the solution is called a multiple diagonal solution, as in Figure 

II.10 (b).  If the arrangement with diagonal block pattern is complemented by an additional 

block, as in Figure II.10 (c), it is called a supplemented diagonal solution.  Nelissen [1993] 
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reports the work of other researchers with this heuristic.  An important characteristic of the 

diagonal block pattern is its symmetry, with all holes having the same size. 

Nelissen [1993] proposes other heuristics, using the same basic idea, the angle 

heuristic and the recursive angle heuristic, which allow more complex arrangements than 

the diagonal heuristics.  The main difference between the diagonal heuristics and the angle 

heuristics is that the arrangement obtained with these latter procedures may not be 

symmetric, and holes can have different sizes, as shown in Figure II.11. 

 
Figure II.11 Optimal packing pattern obtained with the angle heuristic for the class of 
instance (20, 16, 7, 3). 

The angle heuristic uses three nested loops.  The outer loop determines if additional 

boxes can be packed in the pallet, and there is one loop for each dimension.  At each step of 

the procedure, a fraction of the current length and width is packed with a partial solution 

computed from the efficient partitions, and three new homogeneous blocks are added to the 

current solution: one at the left lower corner, one to the right, and one above the first block.  

If (i, j) is an efficient partition of the current length, (f, g) is an efficient partition of the 

current width, and i, j, f, g > 0, then four possible arrangements are analyzed, depending on 

the selection of the orientation of the boxes for each block, and the relative size of these 

blocks: 

• A j f×  block of V-boxes at the lower left corner of the current partial pallet, 

with an i k×  block of H-boxes to the right, and a l g×  block of H-boxes above, 
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where in the first arrangement ( , ) ( , )k l f a b j b a= ∗ ∗        and in the second 

arrangement ( , ) ( , / )k l f a b j b a= ∗ ∗       , and 

• An i g×  block of H-boxes at the lower left corner of the current partial pallet, 

with a j k×  block of V-boxes to the right, and a l f×  block of V-boxes above, 

where in this third arrangement ( , ) ( , )k l g b a i a b= ∗ ∗        and in the forth 

( , ) ( , / )k l g b a i a b= ∗ ∗       . 

The selection of values for k and l determines whether the corner block is longer 

than the block above it, or “higher” than the block at the right.  Figure II.12 (after Nelissen 

[1993]) pictures the four possible cases, for instance (40, 32, 7, 3), X-partition (4, 4) and Y-

partition (2, 6). 

 

Figure II.12 Initial partial solutions of the angle heuristic for the class of instance (40, 32, 
7, 3). 
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(a) solution with a block of V-boxes in the corner, k = 4 and l = 2; (b) also a corner block 
with V-boxes, but k = 5 and l = 1; (c) a block with H-boxes in the corner, k = 2 and l = 10; 
(d) also a corner block with H-boxes, but k = 3 and l = 9 (after Nelissen [1993]). 

In the angle heuristic, the angle, or selection of the type of block in the corner, and 

values for k and l are fixed, and are repeatedly applied in the following steps of the 

procedure.  If a used region remains in the pallet, the one-block heuristic is used to finish 

up the packing pattern. 

In the recursive angle heuristic, a different angle is applied at each step of the 

procedure, allowing the creation of more complex packing arrangements. 

F. MORE COMPLEX HEURISTICS 

When simple heuristics fail to pack a number of boxes equal to the best available 

upper bound, more complex heuristics may be useful.  Different types of complex 

heuristics, usually based on recursion, are available in the literature. 

Nelissen [1993] proposes extending the recursive angle heuristic, allowing the use 

of a simple heuristic at each step of the procedure.  In this case, at every step, the procedure 

tries a different angle and tests if a five-block heuristic yields a better solution.  Nelissen 

also includes the possibility of completing the solution generated with the angle heuristic 

with one or more homogeneous blocks.  This heuristic is named the recursion heuristic.  

The same paper proposes another heuristic, the complex-block heuristic.  This heuristic is 

based on a seven-block heuristic, originally formed with homogeneous blocks, but it allows 

the central block to be an angle block, or a block generated by another heuristic. 

Scheithauer and Terno [1996] propose the G4-heuristic.  This heuristic is a 

recursive four-block heuristic.  The G4-heuristic is able to solve all problem instances 

defined by conditions (II.28) to (II.30), and able to solve approximately 99% of their test 

instances. 

Morabito and Morales [1998] propose another application of recursion to a simple 

heuristic.  Their algorithm is a recursive five-block heuristic, based on the procedure 

proposed by Bischoff and Dowsland [1982]. 
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III. EQUIVALENCE CLASSES IN PLP 

This chapter discusses PLP equivalence classes and analyzes new relationships 

among instances of PLP. 

A. REPRESENTING EQUIVALENCE CLASSES 

Because instances of PLP in the same equivalence class share the same set of 

optimal solutions, once one instance is solved, the solution can be stored in a database and 

retrieved whenever a solution to an instance of PLP of the same class is necessary 

[Dowsland 1987a].  The most straightforward way to identify each equivalence class in a 

database is to encode the set of efficient partitions defining the class.  This way, given a 

new instance, it is possible to compute the set of efficient partitions and compare it with the 

entries in the database.  One possible problem is that the cardinality of this set increases 

with the number of boxes packed.   

Another approach is to select a unique class representative.  This way, only four 

integers are necessary to represent the class, independent of the number of boxes in the 

optimum packing.  But identification of instances belonging to the same class must be 

performed efficiently. 

One option for defining an equivalence-class representative is the instance that 

minimizes the area ratio bound, the Minimum Area Ratio Instance (MARI).  But the 

minimization problem can have a solution at an open boundary, or at a non-integral interior 

point, as discussed in Chapter II, and in these cases the dimensions of the MARI can only 

be approximated, when using integers.  Different approximations can generate different 

instances within the same class, complicating the identification process.   

Another candidate for equivalence-class representative is the Minimum Size 

Instance (MSI), the instance that minimizes the dimensions of both the pallet and the box.  

We say that instance ( , , , )X Y a b�� � �  is the Minimum Size Instance of a class if for all instances 

( , , , )X Y a b  in the same class, , , ,X X Y Y a a b b≤ ≤ ≤ ≤�� � � . 



48 

1. Existence and Uniqueness of the Minimum Size Instance 

As explained when presenting the Perfect Partition Equivalent Bound, in Chapter II, 

given an instance ˆˆ ˆ ˆ( , , , )X Y a b  of PLP we can obtain the pallet with minimum allowed 

dimensions, X Y∗ ∗× , for the given box dimensions, applying the perfect partition 

equivalent function.  Therefore, if the dimensions of the box in the MSI, a b× �� , are known, 

then the dimensions of the pallet are given by ˆ( , , )X G X a b= �� �  and ˆ( , , )Y G Y a b= �� � .  

Therefore, the dimensions of the pallet in the MSI of a given equivalence class are 

determined once the dimensions of the box are known. 

We show that the MSI is unique in a class and its dimensions can be easily 

bounded, simplifying the process of enumerating equivalence classes. 

Theorem III.1: Every equivalence class of PLP has one and only one MSI. 

Proof: We initially show that there is no more than one MSI in each class.  Then we show 

that every class has at least one MSI.   

Suppose 1 1 1 1( , , , )X Y a b  and 2 2 2 2( , , , )X Y a b  are two MSIs in an equivalence class.  

By definition, both instances minimize all dimensions of the pallet and the box 

( 1 2 1 2 1 2 1 2, , ,X X Y Y a a a a≤ ≤ ≤ ≤  and 2 1 2 1 2 1 2 1, , ,X X Y Y a a a a≤ ≤ ≤ ≤ ), implying 

1 2 1 2 1 2 1 2, , ,X X Y Y a a a a= = = = .  Therefore, if there is a MSI, it is unique. 

Now consider an equivalence class.  Because the dimensions of the pallet in the 

MSI are a function of the dimensions of the box in the MSI, the only way for a class not to 

have an MSI is if there exists one instance, say 1 1 1( , , , )X Y a b� , with minimum length for the 

box  (i.e., a a≤�  for all instances ( , , , )X Y a b  in the same class) and another instance, 

2 2 2( , , , )X Y a b� , in which the box has minimum width (i.e., b b≤�  for all instances 

( , , , )X Y a b  in the class).  In this case, 2a a> �  and 1b b> � .  The strict inequalities hold 

because otherwise at least one of the instances would have the box with both minimum 

dimensions.  As both instances belong to the same class, 1 1 2 2( , , ) ( , , )E X a b E X a b= ��  and 

1 1 2 2( , , ) ( , , )E Y a b E Y a b= �� .  We show that the MSI can be identified from these two 

instances. 
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As Dowsland [1987a] shows, a scaled instance of PLP remains in the same 

equivalence class.  After scaling, the dimensions of the pallet and box may no longer be 

integers.  Normalizing the width of the box to 1 in the above instances, we obtain instances 

1 1 1 1 1( , , ,1)X b Y b a b�  and 2 2 2( , , ,1)X b Y b a b� � � .  Because 1b b> �  and 0b >� , then 

11 1 ,b b>�  and this result together with 2a a> �  give us 2 1a b a b a b> >� �� � .  Because an 

equivalence class is a convex set [Nelissen 1993], there is an instance, possibly fractional, 

0 0( , , ,1)X Y a b��  in the class.  If we multiply the dimensions by b�  we obtain the instance 

0 0( , , , )X b Y b a b∗ ∗� � �� .  We can apply the perfect partition equivalent function, obtaining 

1( , , )X G X a b= �� �  and ( , , )Y G Y a b= �� � .  The instance ( , , , )X Y a b�� � �  satisfies the requirements to 

be the MSI of the class.  Therefore, the class has an MSI.  Q.E.D. 

As shown above, every class has a unique MSI.  And in a procedure to identify the 

MSI of a class, it makes no difference which box dimension we choose to minimize first. 

2. Identifying the MSI 

The problem of identifying the MSI could be formulated as a IP, but as in the 

minimization of area ratio, discussed in Chapter II, we can relax the integrality constraints 

and consider only normalized instances in which 1b = .  Because the dimensions of the 

pallet are functions of the dimensions of the box, and the width is fixed, the problem 

reduces to a one-dimensional problem, where we minimize the box length.  Constraints 

(II.7) to (II.12) are used again.  But, unlike the area ratio case, the objective function is 

linear, and the optimal solution is attained at an extreme point.  Because all coefficients in 

the problem are integer, the objective is rational. 

Once the optimal solution is obtained, if it is fractional, say ˆ ˆ ˆ( , , ,1)X Y a , with 

â c d= , where the greatest common divisor of c  and d  equals 1, we can scale it up and 

obtain an integral solution, ˆ ˆ( * , * , , )X d Y d c d , with minimum integer dimensions. 

If we model the problem as an LP, constraints (II.8), (II.9), (II.11) and (II.12) can be 

converted to greater than or equal to inequalities if we observe that, for integer-valued 

variables, the minimum surplus must be 1 because all coefficients are integers. 
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 Therefore, constraints (II.7) to (II.12) can be replaced by 

 0,X i a j b− ∗ − ∗ ≥  ˆˆ ˆ( , ) ( , , )i j E X a b∀ ∈ , (III.1)

 ( 1)* 1,i a j b X∗ + + − ≥  ˆˆ ˆ( , ) ( , , )i j E X a b∀ ∈ ,   (III.2)

 ˆ ˆ( 1) 1X a a X  + ∗ − ≥  ,  (III.3)

 0,Y f a g b− ∗ − ∗ ≥  ˆˆ ˆ( , ) ( , , )f g E Y a b∀ ∈ , (III.4)

 ( 1) 1,f a g b Y∗ + + ∗ − ≥  ˆˆ ˆ( , ) ( , , )f g E Y a b∀ ∈ , (III.5)

 ˆ ˆ( 1) 1Y a a Y  + ∗ − ≥  .  (III.6)

In this LP, our objective is to minimize a , and we can observe that at least one of 

constraints (III.2), (III.3), (III.5), and (III.6) will be binding in the optimal solution, or we 

could reduce a  even further.  We call these efficiency constraints.  Constraints (III.1) and 

(III.4) guarantee the feasibility of the partitions, so we call them fitting constraints. 

If we are given an integer instance ( , , , )X Y a b′ ′ ′ ′ , we can determine if it is the MSI 

by testing its dimensions against constraints (III.1) to (III.6).  If there are fitting constraints 

binding for both X  and Y , and at least one of the efficiency constraints is binding, this 

means that we cannot reduce the values of a  and b .  In this case, instance ( , , , )X Y a b′ ′ ′ ′  is 

the MSI.  If none of the efficiency constraints is binding, then we could reduce the 

dimensions, and ( , , , )X Y a b′ ′ ′ ′  is not the MSI.   

As seen above, the identification of the MSI is a one-dimensional problem, up to a 

scalar multiplication, and an integer solution has at least one efficiency constraint binding.   

3. Bounds on the Dimensions of the MSI of an Equivalence Class 

With upper bounds on box and pallet dimensions of the MSI of a class (our class 

representative), we find all equivalence classes with at most a selected number of boxes.  

For instance ˆˆ ˆ ˆ( , , , )X Y a b , let ˆ ˆ ˆxA X a =    and ˆ ˆ ˆyA Y a =   .  Dowsland [1987a] proposes 

bounds for a  and b, 1xa B≤ +  and 1xb A≤ + , when computing all equivalence classes 

with at most a selected number of boxes.  Unfortunately, these bounds are incorrect, as can 

be verified with instance (104, 90, 15, 13), MSI of its class.  For this instance, 6xA = , 

6yA = , 8xB = , 6yB = , with 1x ya B B= + +  and 1x yb A A= + + .  From a rearranged 
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version of the LP used to determine the MSI, we establish below that 1x ya B B≤ + +  and 

1x yb A A≤ + + .   

The LP (Primal) is given as follows: 

Indices:  

 i  efficient partitions on length, ˆ0,..., xi A= . 

 f  efficient partitions on width, ˆ0,..., yf A= . 

 

Data:  

 ipx  number of V-boxes in partition i of the length. 

 fpy  number of H-boxes in partition f of the width. 

 

Variables:  

    X, Y, a, b  as previously defined. 

Formulation: 

bMin  

subject to 

 0,iX i a px b− ∗ − ∗ ≥  ˆ{0,1, , }xi A∀ ∈ … , (III.7)

 ( 1)* 1,ii a px b X∗ + + − ≥  ˆ{0,1, , }xi A∀ ∈ … , (III.8)

 ˆ( 1) 1xA a X+ ∗ − ≥ ,  (III.9)

 0,fY f a py b− ∗ − ∗ ≥  ˆ{0,1, , }yf A∀ ∈ … , (III.10)

 ( 1) 1,ff a py b Y∗ + + ∗ − ≥ ˆ{0,1, , }yf A∀ ∈ … , (III.11)

 ˆ( 1) 1yA a Y+ ∗ − ≥ .  (III.12)

In this case, we are minimizing b .  Because the problem can be reduced to an one-

dimensional problem, it makes no difference if we minimize a  or b , because the result is 

the same. 

An inspection of constraints (III.7) and (III.8) shows that the addition of the 

constraints corresponding to the same value of i in each set bounds b below by 1, i.e., 
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( ) ( ( 1) ) 1.i iX i a px b i a px b X b− ∗ − ∗ + ∗ + + ∗ − = ≥  Therefore, when (Primal) is feasible, it 

has an optimal solution, with objective function value greater than or equal to 1.  In this 

optimal solution, at least four constraints are binding because it is a four-dimensional LP 

and the variables have no nonnegativity constraints [Bertsimas and Tsitsiklis 1991].  

Because the MSI of a class has one perfect partition in each dimension, then, at least 

two fitting constraints, one in the length and one in the width, are tight in the optimal 

solution.  Also, at least one efficiency constraint is binding. 

The dual of (Primal) has only four rows, and its bases are 4 4×  matrices.  This 

characteristic makes it easer to work with the dual when computing the bound on b . 

Let 1,0 1, 2,0 2, 3 4,0 4, 5,0 5, 6( ,..., , ,..., , , ,..., , ,..., , )
x x y yA A A As s s s s s s s s s=s , be the vector of dual 

variables of the (Primal).  The dual (Dual) of (Primal) is given by 

2 3 5 6
0 0

yx AA

i f
i f

Max s s s s
= =

+ + +∑ ∑  

subject to 

 
2 1 3 5 4 6

0 0
( ) ( 1) ( ) ( 1) 0

yx AA

i i x f f y
i f

s s i A s s s f A s
= =

− ∗ + + ∗ + − ∗ + + ∗ =∑ ∑ , (III.13)

 
2 1 5 4

0 0
(( 1) * ) (( 1) ) 1

yx AA

i i i i f f f f
i f

px s px s py s py s
= =

+ ∗ − + + ∗ − ∗ =∑ ∑ , (III.14)

 
1 2 3

0
( ) 0

xA

i i
i

s s s
=

− − =∑ , (III.15)

 
4 5 6

0

( ) 0
yA

f f
f

s s s
=

− − =∑ , (III.16)

 ≥s 0 . 

Let P be the matrix of technological coefficients of the (Primal).  Then PT has the 

following structure: 

0 0 0 0

0 0 1 0 0 1
111 0 0

1 1 1 0 0 01 1 0 0
0 0 0 1 1 10 0 1 1

y yx x

y yx x x y

A AA A

A AA A A A
py pypx pxpx px py py
−− + +

 − +− +− + − 
 − −−
 

− −−  

… … … …
… … … …
… … … …
… … … …
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In every optimal dual solution, there is an optimal basis that contains one column 

corresponding to a perfect X-partition, and another column corresponding to a perfect Y-

partition. This follows from the (Primal), in which there is always one binding X-partition 

row and one binding Y-partition row. 

Therefore, two of the columns in the basis look like this: 

.
1 0
0 1

⋅ ⋅ 
 ⋅ ⋅ 
 
 
 

 

Also, the optimal basis contains at least one column corresponding to a binding 

efficiency constraint in the primal, or otherwise the dual objective function would have 

value zero.  Therefore, the basis contains at least one of the following columns: 

or .
1 0
0 1

⋅ ⋅   
   ⋅ ⋅   
−   
   −   

 

Considering the conditions above, the optimal basis has one of the following 

layouts, up to an exchange in the last two rows: 

1) , 2) , 3) , or  4) . 
1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       
       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

− − − − −       
       −       

 

 

Let B be a basis, and let ( , , , )b p q r ss s s s=s  be the corresponding vector of basic 

variables.  The coefficients of the first two rows of the basis are identified as 

, , 1, 2, 1, 2,3,4k lb k l= = , where k indicates the row and l the column.  If the column 

corresponds to a fitting constraint in the (Primal), its coefficients are identified by ,k lb .   

The cost coefficients for the (Dual) objective function take value 0 for fitting 

constraints, and 1 for efficiency constraints.  Therefore, the vectors of cost coefficients 

corresponding to the cases above are 
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 1) (0, 0, 1, 1), 

 2) (0, 0, 1, 0),  

 3) (0, 0, 1, 0), and 

 4) (0, 0, 1, 1). 

 In all four cases, we can reduce the system of equations to a 2 2×  system. 

Case 1) The system is given by 

 
1,1 1,2 1,3 1,4 0p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.17)

 
2,1 2,2 2,3 2,4 1p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.18)

 0p r ss s s− − = (III.19)

 0qs = . (III.20)

We use 0qs =  and p r ss s s= + , and obtain the following system: 

 
1,3 1,1 1,4 1,1( ) ( ) 0r sb b s b b s+ ∗ + + ∗ = (III.21)

 
2,3 2,1 2,4 2,1( ) ( ) 1r sb b s b b s+ ∗ + + ∗ = . (III.22)

Case 2) The system is given by 

 
1,1 1,2 1,3 1,4 0p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.23)

 
2,1 2,2 2,3 2,4 1p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.24)

 0p r ss s s− + = (III.25)

 0qs = . (III.26)

We use 0qs =  and r p ss s s= + , and obtain the following system: 

 
1,3 1,1 1,3 1,4( ) ( ) 0p sb b s b b s+ ∗ + + ∗ = (III.27)

 
2,3 2,1 2,3 2,4( ) ( ) 1p sb b s b b s+ ∗ + + ∗ = . (III.28)

Case 3) The system is given by 

 
1,1 1,2 1,3 1,4 0p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.29)

 
2,1 2,2 2,3 2,4 1p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.30)

 0p rs s− = (III.31)
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 0q ss s+ = . (III.32)

We use p rs s=  and q ss s= − , and obtain the following system: 

 
1,3 1,1 1,4 1,2( ) ( ) 0r sb b s b b s+ ∗ + − ∗ = (III.33)

 
2,3 2,1 2,4 2,2( ) ( ) 1r sb b s b b s+ ∗ + − ∗ = . (III.34)

Case 4) The system is given by 

 
1,1 1,2 1,3 1,4 0p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.35)

 
2,1 2,2 2,3 2,4 1p q r sb s b s b s b s∗ + ∗ + ∗ + ∗ = (III.36)

 0p rs s− = (III.37)

 0q ss s− = . (III.38)

We use p rs s=  and q ss s= , and obtain the following system: 

 
1,3 1,1 1,4 1,2( ) ( ) 0r sb b s b b s+ ∗ + + ∗ = (III.39)

 
2,3 2,1 2,4 2,2( ) ( ) 1r sb b s b b s+ ∗ + + ∗ = . (III.40)

 

In each of the four cases, let d be the determinant of the 2 2×  matrix.  The matrix is 

a basis and all elements are integers, so 1d ≥ .  Therefore, the respective optimal solutions 

of the (Dual) are 

1) 1,1 1,4 1,1 1,3 1,3 1,4( ( ) ( )) 1r s xs s b b b b d b b A+ = − + + + ≤ − ≤ + , 

2) 1,1 1,4 1,1 1,4( )r xs b b d b b A= − ≤ − ≤ , 

3) 1,2 1,4 1,2 1,4( )r xs b b d b b A= − ≤ − ≤ , and 

4) 1,4 1,2 1,3 1,1 1,3 1,1 1,4 1,2( ( ) ( )) ( ) ( ) 1r s x ys s b b b b d b b b b A A+ = − + + + ≤ + − + ≤ + + . 

In case 1), both coefficients are nonnegative, corresponding to efficiency 

constraints, and one can take value 0.  Therefore, the maximum dual objective function 

value that can be attained is 1xA + . 
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In cases 2) and 3), all coefficients are nonpositive, corresponding to fitting 

constraints, and one coefficient, in each case, can take value 0.  Therefore, the maximum 

value that can be attained is xA . 

In case 4), if we consider the order of the rows as presented in (III.35) to (III.38), 

the result follows because 1,3 1,1( )b b+  is computed over constraints in X, taking maximum 

value 1xA + , and 1,4 1,2( )b b+  is computed over constraints in Y, taking minimum value yA− .  

If the order of the rows is exchanged, the values obtained are also exchanged, with 

1,3 1,1( )b b+  taking maximum value 1yA +  and 1,4 1,2( )b b+  taking minimum value xA− .   

Considering all four cases, we verify that 1x yA A+ +  is an upper bound on all 

optimal solutions of the dual, and an upper bound on the optimal objective function value 

in the (Primal).  Because the primal objective is minimizing b  in the equivalence class, 

then the value of b in the MSI for all equivalence classes, satisfies: 

 1x yb A A≤ + +  (III.41)

If we select to minimize a  in the (Primal), then the derived upper bound for a  is 

1x yB B+ + .  We obtain the bounds for X and Y by combining the bounds computed for a  

and b and the fitting constraints in the (Primal).   

Because the bounds used by Dowsland [1987a] are incorrect, we might observe 

some differences when analyzing the solutions of the classes defined by restrictions (II.27) 

to (II.29).   

4. A Simple Algorithm to Identify the MSI 

Previously we presented an LP formulation for the problem of identifying the MSI 

of a class.  This model helped us develop bounds on the sizes of box and pallet in an 

equivalence class.  These bounds enable an even simpler method for identifying the MSI. 

Given an instance of PLP, ˆˆ ˆ ˆ( , , , )X Y a b  or the corresponding set of efficient 

partitions, we can test values for b� , starting at 1, and compute the other variables, until the 

MSI is found.  The algorithm operates with two main loops.  The outer loop selects values 

for b� , from 1 to ˆ ˆ ˆmin{ , 1}x yb A A+ + .  For each value of b� , we compute the range of a� , aR� , 
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given by ˆ ˆˆ ˆ{ : ( 1) (( 1) 1) }a x x x xR a Z B b A a B b A+    = ∈ ∗ + < ≤ + ∗ −   �
� � .  The second loop 

enumerates values for a�  in aR� .  With a�  and b� , we compute ˆ( , , )X G X a b= �� � .  If the 

selected values for X� , a� , and b�  satisfy the efficiency constraints, repeat the same 

computations for Y� , or otherwise try the next value for a .  If the inequalities for Y�  are not 

satisfied, continue with the procedure.  If satisfied, then instance (X, Y, a, b) is the MSI.  

This algorithm is simple to implement, with complexity 4( )xO B , and does not require 

setting up an LP. 

B. GENERATING EQUIVALENCE CLASSES 

Dowsland [1987b] works with a subset of approximately 8,000 equivalence classes 

with MAR bound of up to 50 boxes.  Scheithauer and Terno [1996] work with a randomly 

generated subset of approximately 50,000 equivalence classes with MAR bound up to 100 

boxes.  Instead of generating random instances, or working with a subset of the problems 

with a given size, we enumerate all equivalence classes with up to 100 boxes per pallet, as 

defined by equation (II.31).  Also we use the MSI to uniquely identify each class and, 

therefore, record only one instance per class. 

If N is the maximum number of boxes that can be packed on a pallet, we have 

 1x yA A N+ ≤ + , and (III.42)

 2x yB B N+ ≤ . (III.43)

We recall some definitions to demonstrate these bounds.  xB  ( yB ) is the maximum 

number of items that can be placed side by side across the length (width) of the pallet.  

Therefore, y xB B N≤ ≤  and 2y xB B N+ ≤ .  Also, any optimal must have at least xA  ( yA ) 

items placed side by side across the length (width) of the pallet so x yA A N∗ ≤ .  If 

0, andy x x yA A N A A N= ≤ + ≤ .  If 1yA ≥ , x yA N A≤  and 1x y y yA A N A A N+ ≤ + ≤ + . 

Our PLP Equivalence Class Generation Algorithm (PLP-ECGA) has six main 

loops, and uses an ordered list to maintain the distinct generated classes for given values of 

a  and b .  The outermost loop determines the values for b, and goes from 1 to N+2, 
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because 1x yA A N+ ≤ +  (Equation III.36) and 1x yb A A≤ + +  (Equation III.35).  The 

second loop select values for a, from b+1 to 2N, except when b = 1, when a can also be 

equal to 1.  If the greatest common divisor (GCD) of a  and b  is greater than 1, then the 

second loop proceeds to the next value for a.  Otherwise, the ordered list, with all generated 

classes, is emptied.  The third and forth loops select among all the possible perfect 

partitions of the width, and define the value for Y.  The fifth and sixth loops select among 

the perfect partitions of the length, and define X.  If instance (X, Y, a, b) is the MSI; has an 

area ratio bound within the limit; and has not been generated before, as verified with the 

ordered list, then it is included in the list and is recorded.  The list is necessary because 

different combinations of a  and b can yield the same values for X and Y. 

It is possible to verify through the algorithm that the number of equivalence classes 

is bounded by a polynomial in N, albeit a large polynomial.  There are 2( )O N  ways of 

assigning values to a  and b, corresponding to the number of pairs of relatively prime 

numbers less than or equal to 2N.  More precisely, the number is given by
2

1
( )

N

k
kφ

=
∑ , where 

( )kφ  is the Euler phi-function, which gives the number of integers less than k that are 

relatively prime to k [Gallian 1998].  The loops corresponding to the width are executed 
2( )O N  times for each pair a  and b.  The same happens with the loops corresponding to the 

length.  Therefore, the number of equivalence classes, with area ratio bound up to N, is 

bounded above by a sixth-degree polynomial in N.  But because the algorithm generates 

many instances from the same class, and the same instance more than once, empirical 

results suggests that the number of equivalence classes might increase with 4N .   

The instances generated with the PLP-ECGA procedure are divided in groups of up 

to 10, 20, 50 and 100 boxes per pallet, as defined by the AR bound.  Table III.1 presents in 

the second column the number of equivalence classes of PLP in each group.  The third 

column contains the time required, in seconds, to generate the equivalence classes within 

each group on a Pentium III 600 MHz personal computer.  The dimensions of the pallet and 

box in each MSI are stored for future reference, including the work in the next chapter. 
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Maximum Number of 

Boxes in each Group 

Number of Classes in 

each Group 

Run Time to Generate 

all Classes (Sec) 

10 662 0 

20 7,309 3 

50 216,095 295 

100 3,080,730 14,667 

Table III.1 Number of equivalence classes in each group.   
The first column represents the maximum number of boxes in each group; the second 
column represents the number of equivalence classes in each group; and the third column 
contains the time, in seconds, required to generate all classes in each group. 

Table III.2 presents the distribution of classes in each group, where the MSI is 

defined with b smaller than or equal to 1, 2, 5, 10, 20, and 50. 
Number of 

Boxes 
Number of 

Classes b = 1 b ≤ 2 b ≤ 5 b ≤ 10 b ≤ 20 b ≤ 50 

10 662 92 276 609 662 662 662 
20 7,309 520 1,760 4,873 6,659 7,309 7,309 
50 216,095 6,362 23,270 71,686 119,298 182,870 216,095 

100 3,080,730 46,300 174,177 544,004 964,673 1,710,574 2,822,767 

Table III.2 Distribution of values of b in the MSI in each class.   
The first column defines the maximum number of items that can be packed in an instance in 
the group of classes covered, as given by the area ratio bound.  The second column lists the 
number of distinct classes in each group.  The following columns present the number of 
classes where the value of b in the MSI is less than or equal to 1, 2, 5, 10, 20, and 50. 

When considering instances of PLP with at most 100 boxes, in 91% of the 

equivalence classes the value of b in the MSI is less than or equal to 50.  

In the next chapter, we develop new bounds and new algorithms for PLP, solving 

all instances generated with the PLP-ECGA procedure. 
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IV. SOLVING PLP 

In this chapter we present a new exact algorithm, new bounding procedures, and 

propose a set of new heuristics.  One of the new heuristics, the G5-heuristic, optimally 

solves all PLP instances with at most 50 boxes in the packing pattern, and generates 

solutions that differ from the optimal solution by at most one box for all problems with 100 

or fewer boxes packed. 

A. A NEW SIMPLE HEURISTIC - THE HOLLOW BLOCK HEURISTIC 

As described in the previous Chapter, both the diagonal block and the angle 

heuristics are based on placing blocks of boxes, with a given orientation, along the diagonal 

of the pallet, surrounded by boxes with the opposite orientation.  The diagonal heuristic 

restricts each diagonal block to have a width of only one box; the angle heuristic is 

recursive in nature, and has longer run time, when compared to the diagonal heuristic.   

We propose an alternative, the Hollow Block (HB) heuristic to solve PLP using 

diagonal block patterns.  This new heuristic has more flexibility than the diagonal block 

heuristic because it allows the diagonal elements to have more than one box across the 

width, and achieves shorter run times than the angle heuristic because it only looks for 

patterns generated by perfect partitions of the length and width.  This heuristic is 

specifically designed to be used within a more complex heuristic, where the complete 

arrangement of boxes in the pallet combines many blocks with different patterns.  

The heuristic works by selecting compatible pairs of perfect partitions for both 

length and width, and uses these partitions to define the dimensions of the elements of the 

hollow block.  Let ( , ) ( , , )i j P X a b∈ , for 0i >  and 0j > , and ( , ) ( , , )f g P Y a b∈ , for 

0f >  and 0g > , be the selected perfect partitions.  If i a j b∗ ≤ ∗  and ,g b f a∗ ≤ ∗  the 

diagonal elements are formed by H-boxes, and the main elements formed of V-boxes.  If 

j b i a∗ ≤ ∗  and ,f a g b∗ ≤ ∗  the diagonal elements are formed by V-boxes, and the main 

elements formed of H-boxes.  Otherwise, there can be only four blocks, two with H-boxes, 

and two with V-boxes.   
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After defining the composition of the diagonal elements, the heuristic determines 

whether it is feasible to create main elements with the necessary dimensions to generate the 

hollow block.   

 

Figure IV.1 Hollow block pattern for the instance (85, 66, 8, 7).  . 

As seen in Figure IV.1, if there are d diagonal elements in a pattern, then there are 

( 1)d d∗ −  main elements in the pattern.  This happens because if we order the diagonal 

element from left to right, with 1 being the leftmost block and d the rightmost, each 

diagonal block i has d i−  main elements to the right, and d i−  above, or 

1
2 ( ) ( 1)

d

i
d i d d

=

∗ − = ∗ −∑  main elements.  If the diagonal element is formed by V-boxes, as 

in Figure IV.1, it is feasible to create the main elements if 0mod ( 1)i d≡ −  and 

0mod ( 1).g d≡ −  At this point of the heuristic, the value of d is still unknown, and the 

heuristic tries values that divide ( , )GCD i g , the greatest common divisor of i  and g.  If the 

diagonal element is formed by H-boxes, the same considerations are valid, but using j and f 

instead.  In the example in Figure IV.1, i = 8, g = 6 and d = 3. 
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The pseudocode for the HB heuristic is: 

 Best_Solution ← 0  

 For each ( , ) ( , , ), 0, 0i j P X a b i j∈ > >  

    For each ( , ) ( , , ), 0, 0f g P Y a b f g∈ > >  

       If i a j b∗ ≤ ∗  and ,g b f a∗ ≤ ∗  diagonal block is H-block 

          For d from 2 to ( , ) 1GCD j f +  

             ( ( 1))S d i g j f d← ∗ ∗ + ∗ −  

             If S > Best_Solution then update Best_Solution 

       If j b i a∗ ≤ ∗  and ,f a g b∗ ≤ ∗  diagonal block is V-block 

          For d from 2 to ( , ) 1GCD i g +  

             ( ( 1))S d f j i g d← ∗ ∗ + ∗ −  

             If S > Best_Solution then update Best_Solution 

                  Otherwise, the solution has only four blocks 

This heuristic has complexity similar to the two-block heuristic, because it also 

searches for the best combination of partitions among the efficient partitions of length and 

width. 

B. PERFORMANCE OF SIMPLE HEURISTICS AND BOUNDS 

For each equivalence class, we determine whether an optimal solution, verified with 

easily computed bounds, can be found using a simple heuristic.  We use the one-, two-, 

five-block, and HB heuristics, together with the AR bound, the MP bound, Barnes’ bound, 

and the MAR bound.  We first compute all bounds and select the best one.  Then we apply 

the heuristics in the order of increasing complexity: one-block, two-block, hollow-block, 

and five-block.  If the bound is not attained by a heuristic, then the next one is applied. 

The results are listed in Table IV.1.  The first two columns are the same as in Table 

III.2.  The following four columns have the number of instances solved to optimality using 

the simple heuristic listed in the column header.  The last column contains the number of 

instances without a proven optimal solution, and are, therefore, instances where a more 

complex heuristic, or a better bound, can possibly produce some improvement. 
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Number 
of Boxes 

Number 
of Classes One-Block Two-Block HB Five-Block Classes with 

open results 
10 662 469  (70.8) 166 (95.9) 19 (98.8) 8 (100.0) 0 (0.0)
20 7,309 4,646 (63.6) 2,156 (93.1) 236 (96.3) 203 (99.1) 68 (0.9)
50 216,095 128,204 (59.3) 63,322 (88.6) 4,455 (90.7) 13,291 (96.8) 6,823 (3.2)

100 3,080,730 1,812,852 (58.9) 840,019(86.2) 45,405 (87.7) 225,929 (95.0) 156,527 (5.0)

Table IV.1 Absolute (and cumulative percentage, in the order of application of heuristics) 
performance of simple heuristics on equivalence classes in each group.   
The first two columns are the same as in Table III.2.  The next four columns contain the 
number, and cumulative percentage, of classes with optimal packing computed by a simple 
heuristic and verified with the AR bound, the MP bound, Barnes’ bound, or the MAR 
bound.  The last column contains the number of classes with the best upper bound larger 
than the best packing pattern generated by a simple heuristic.  For example, the first row 
shows that among the 662 distinct equivalence classes with up to 10 boxes, the one-block 
solved, to optimality, instances in 469 classes (70.8%), the two-block solved an additional 
166 instances, totaling 635 classes (95.9%) solved with these two heuristics.  The HB and 
five-block heuristics solved instances in the 27 remaining classes (4.1%), with up to 10 
boxes packed in the pallet. 

Considering instances with up to 100 boxes per pallet, the one- and two-block 

heuristics combined generated optimal arrangements in 86.2% of the equivalence classes.  

Adding the results of the other two heuristics, HB and five-block, 95.0% of the instances 

are solved to optimality by simple heuristics, and the result confirmed by simple bounds.  

This percentage does not include the cases where a better bound could prove optimality.  If 

we consider the problems with at most 50 boxes, 96.8% of the instances are solved to 

optimality by simple heuristics. 

C. NEW BOUNDS FOR PLP 

In this section, we introduce new bounds for PLP.  As seen in Table IV.1, only 5% 

of problems with 100 or fewer boxes remain without a proven optimal solution after 

applying simple heuristics and bounds.  But this still represents more than 150,000 classes.  

In order to better identify the instances where a heuristic achieves the optimal result, but is 

not confirmed by a simple bound, we analyze and propose a set of new bounds. 

1. Bounds Based on the Existence of Single Perfect Partitions 

These bounds are applicable when, given an instance ( , , , )X Y a b′ ′ ′ ′ , there is only 

one perfect partition in the width (or length) of the pallet, and packing 
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( , , , )N UN X Y a b′ ′ ′ ′ ′=  boxes produces wasted area, ( , , , , )EW N X Y a b′ ′ ′ ′ ′ , smaller than the 

corresponding dimension Y (or X) of the pallet.   

The first case considered is when this single perfect partition is composed of only 

V-boxes or H-boxes.  We call this partition a Homogeneous Perfect Partition.  In this case, 

we can reduce the width or length of the pallet, and apply one of the existing procedures to 

compute a new bound for this smaller instance.  If necessary and possible, we repeat the 

reduction process.   

 
Figure IV.2 Examples of groups of H-boxes covering a perfect partition used in the proof 
of Theorem IV.1. Here 10yB =  and the dashed lines are a unit column (width 1). 

We prove the case for the width, with H-boxes. 

Theorem IV.1: Let ( , , , )X Y a b′ ′ ′ ′  be an instance of PLP, with ( , , , )N UN X Y a b′ ′ ′ ′ ′=  and 

( , , , , )EW N X Y a b X′ ′ ′ ′ ′ ′< , and the only perfect partition in Y ′  is given by yB b Y′ ′ ′∗ = .  

Then  

( , , , ) ( , , , )yN X Y a b B N X a Y a b′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + −  

Proof:  The pallet can be partitioned into X columns of unit length, each of which is 

composed of Y unit squares, as illustrated by the dashed lines in Figure IV.2.  In a normal 

packing, every unit square on the pallet is either completely covered or uncovered by a box.  

We first observe there must be at least one unit column with zero waste because  
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( , , , , )EW N X Y a b X′ ′ ′ ′ ′ ′< .  Any such unit column with zero waste must be covered with 

H-boxes because this corresponds to the only perfect Y-partition.      

If there is a group of H-boxes completely aligned in an optimal solution, as in 

Figure IV.2 (a), it is easy to see that we can detach the block formed by this group, which 

has yB  boxes, and reconnect whatever is on either side of the block.  The reduced instance 

has solution ( , , , )N X a Y a b′ ′ ′ ′ ′− , and the combined solution is ( , , , )yB N X a Y a b′ ′ ′ ′ ′ ′+ − .  

If the group of H-boxes is present in an optimum solution in a more arbitrary shape, 

as in Figure IV.2 (b), then we can transform this solution to another, with the boxes 

forming a homogeneous block.  Given an arbitrary group of yB′  H-boxes, such that the 

horizontal coordinates of the all boxes in this group overlap in at least one unit of length, 

we perform the transformation by initially removing these yB′  H-boxes from the pallet.  

This operation partitions the boxes in the pallet in two sets: those to the left of the removed 

block, the left set, and those to the right, the right set.  In the next step of the 

transformation, all the boxes of the right set are pushed to the left, until they touch a box 

from the other set.  Suppose that the boxes are pushed by a distance d a′< , and cannot be 

pushed any further.  Then there are at least two boxes that were originally at a horizontal 

distance d from each other.  Let left set and right seti j∈ ∈ be these two boxes.  If we divide 

the width in unit rows, then a portion of both i and j must be contained in at least one unit 

row, or otherwise they would not be touching when one is pushed to left.  Figure IV.3 (a) 

exemplifies this situation, although the orientation of the boxes involved can be different. 
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Figure IV.3 Figure used in the proof of Theorem IV.1. 
(a) Shows the horizontal distance, d, between boxes i and j, and one unit row in which both 
boxes overlap; (b) indicates that at least in one unit column, the width is completely packed 
with H-boxes ; (c) and (b) are examples that show that an H-box cannot cover the indicated 
unit square, and not overlap with boxes i and j.   

Between the two boxes in the original packing though, there was at least one unit 

column completely covered with H-boxes, as in Figure IV.3 (b).  Therefore, at least one 

unit of the unit row segment, between andi j , is covered by an H-box.  But we cannot fit 

an H-box in that region without overlapping with one ori j , as seen in Figure IV.3 (c) and 

(d).  This implies that the distance between andi j  is at least a′ , a contradiction to the 

initial assumption that the original distance was d < a′ .  Therefore, the movement of the 

boxes only stops after the right set moves a distance of at least a′  units.  This creates an 

empty region at the right edge of the pallet with length at least a′ , where the removed 

group of H-boxes can be placed, after being aligned.  Figure IV.2 (c) shows the puzzle-like 

result of removing the group of H-boxes.  Q.E.D. 

Corollary IV.1: Let ( , , , )X Y a b′ ′ ′ ′  be an instance of PLP, with ( , , , )N UN X Y a b′ ′ ′ ′ ′=  and 

( , , , , )EW N X Y a b X j a′ ′ ′ ′ ′ ′ ′< − ∗ .  If the only perfect partition in Y is given by yB b Y′ ′ ′∗ = , 

then  

( , , , ) ( , , , )yN X Y a b j B N X j a Y a b′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∗ + − ∗ .   

This result follows directly if we apply recursion to the previous result. 
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The cases of homogeneous perfect Y-partitions in a, and both cases of X-partitions, 

follow the same line of reasoning.  Note that the sizes of bins to which this bound can be 

applied are limited to Y X a b≤ < ∗ , because for larger sizes if there is a homogeneous 

perfect partition given by m ∗ b, then there is another perfect partition, b ∗ a + (m - a) ∗ b. 

We also note that the procedure to rearrange boxes adopted in the proof of Theorem 

IV.1 only applies to homogeneous partitions that are perfect.  When considering other 

homogeneous efficient partitions, there is at least one unit strip that is not covered with a 

box.  In this case, the considerations associated with Figure IV.3 do not apply.  In Figure 

IV.1, we can see an example of a packing pattern, with homogeneous efficient Y-partitions 

that cannot be rearranged without reducing the number of boxes packed. 

 We refer to this bounding procedure as the Single Homogeneous Perfect Partition 

(SHPP) Bound.  Although the requirements to apply this bound may seem too restrictive to 

be useful, Table IV.2 shows that more than 50% of the instances with at most 100 boxes, 

not bounded by other elementary procedures, are bounded by this new simple bound. 

    

Number of 
boxes 

Number of 
Classes 

Classes 
with open 

results 
from 

Table IV.1 

One-Block Two-Block Hollow-
Block Five-Block 

Classes 
with open 

results 

20 7,309 68 20 29 0 2 17
50 216,095 6,823 1,874 1,823 0 371 2,755

100 3,080,730 156,527 37,350 35,808 0 7,726 75,643

Table IV.2 Number of instances with an open result in Table IV.1 bounded by the SHPP 
Bound, in each group.   
The first three columns are from Table IV.1.  The next four columns contain the number of 
classes with optimal packing patterns generated by the given heuristic.  The last column 
contains the number of classes without a proven optimal solution, after applying the AR 
bound, the MP bound, Barnes’ bound, the MAR bound and the SHPP bound. 

A different bound, also based on single perfect partitions, and wasted area, can be 

computed, when ( , , , , )EW N X Y a b b≤  or ( , , , , )EW N X Y a b a≤ .  In this case, we use some 

results from Nelissen [1995]. 

Nelissen defines ,i jlx  as a lower bound on the number of unit rows in any optimal 

solution where boxes in each such unit row correspond to X-partition (i, j), and ,f gly  as the 

lower bound on the number of unit columns in any optimal solution where boxes in each 

such unit column correspond to Y-partition (f, g).  For any optimal solution, he shows if  
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 ,f gX ly a− < , then the number of H-boxes is a multiple of g, 

 ,f gX ly b− < ,  then the number of V-boxes is a multiple of f, 

 ,i jY lx a− < ,  then the number of V-boxes is a multiple of j,  

 ,i jY lx b− < ,  then the number of H-boxes is a multiple of i. 

We use this result in Theorem IV.2. 

Theorem IV.2: Let ( , , , )X Y a b′ ′ ′ ′  be an instance of PLP, with ( , , , )N UN X Y a b′ ′ ′ ′ ′= , 

( , , , , )EW N X Y a b b′ ′ ′ ′ ′ ′< , and assume that the only perfect Y-partition is given by 

n a m b Y′ ′ ′∗ + ∗ = .  Then the number of H-boxes in the solution is a multiple of m, and the 

number of V-boxes is a multiple of n. 

Proof: Because (n, m) is the only perfect Y-partition and ( , , , , )EW N X Y a b b′ ′ ′ ′ ′ ′< , there 

are more than X b′ ′−  unit columns where boxes in these unit columns correspond to Y-

partition (n, m).  Otherwise, more than b′  unit columns, each with at least one unit of 

waste, would be present, and the total waste would be larger than ( , , , , )EW N X Y a b′ ′ ′ ′ ′ .  

Then , ,n mly X b′ ′> −  , ,n mX ly b′ ′− <   the number of H-boxes is a multiple of m, and the 

number of V-boxes is a multiple of n, as shown by Nelissen.  Q.E.D. 

The same results can be shown for partitions of X. 

One example of application of this bound is the class of instance (14, 13, 4, 3).  The 

area ratio bound is 15, with 2 units of waste.  Because (15,14,13,4,3) 2 3EW b= < = , and 

there is only one perfect X-partition, (2, 2), the number of H-boxes, and V-boxes, is even.  

The bound is reduced to 14, an even number, and the optimum solution is obtained with the 

two-block heuristic.  We refer to the bound generated by this procedure as the Single 

Perfect Partition (SPP) Bound. 

Besides the requirements on the number of H-boxes and V-boxes obtained above, 

another conclusion can be reached regarding the pattern necessary to pack the boxes, with a 

wasted area that is smaller than b.  Because of the integrality of the sizes of boxes and 

pallet, there can be no wasted area at the pallet’s edge, because any such region would have 

length, or width, at least b, and at least one unit for the other dimension, with an area at 

least b.  Therefore, this wasted area must be located in the interior of the pallet, and the 

edges of the pallet are completely packed with boxes. 
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Number of 
boxes 

Total 
Number of 

Classes 

Classes 
with open 

results 
from 

Table IV.4

One-Block Two-Block Hollow-
Block Five-Block 

Classes 
with open 

results 

20 7,309 17 0 1 0 2 14
50 216,095 2,755 0 20 1 28 2,706

100 3,080,730 75,739 0 128 19 234 75,358

Table IV.3 Number of instances with an open result in Table IV.2 bounded by the SPP 
bound in each group.   
The first three columns are from Table IV.2.  The next four columns contain the number of 
classes with optimal packing pattern generated by the given heuristic.  The last column 
contains the number of classes without a proven optimal solution after applying the AR 
bound, the MP bound, Barnes’ bound, the MAR bound, the SHPP bound and the SPP 
bound. 

2. Bounds Based on Relaxed and Restricted Classes 

The concept of equivalence classes is present in several procedures developed to 

solve, or bound, instances of PLP.  This previous work exploits the symmetry of the 

relation between instances belonging to the same class.  If the relation between the set of 

feasible partitions of two instances is not symmetric, we extend the use of equivalence 

classes by defining relaxed and restricted classes. 

Let (X, Y, a, b) and (Z, W, c, d) be instances of PLP, with set of feasible partitions 

given by ( , , )F X a b , ( , , )F Y a b , ( , , )F Z c d , and ( , , )F W c d .  If ( , , ) ( , , )F X a b F Z c d⊂  and 

( , , ) ( , , ),F Y a b F W c d⊂  we define (Z, W, c, d) to be a relaxed class of (X, Y, a, b), and 

represent it ( , , , ) ( , , , ),Z W c d X Y a b;  and define (X, Y, a, b) to be a restricted class of (Z, 

W, c, d), ( , , , ) ( , , , )X Y a b Z W c d≺ .   

For example, consider the instances (69, 36, 11, 5) and (56, 29, 9, 4).  The only 

difference between the sets of feasible partitions is that (0, 14) ∈ F(56, 9, 4), but (0, 14) ∉ 

F(69, 11, 5).  In this case, (69,36,11,5) (56,29,9,4)≺ .  As a result, instance (56, 29, 9, 4) 

can be packed in more ways than instance (69, 36, 11, 5).  Figure IV.4 depicts a feasible 

arrangement for instance (56, 29, 9, 4) in (a), and a feasible arrangement for instance (69, 

36, 11, 5) in (b). 



71 

 
Figure IV.4 Example of packing patterns for restricted and relaxed classes. 
The packing pattern in (a) is feasible for instance (56,29,9,4), but not for instance 
(69,36,11,5); (b) is a feasible packing pattern for both instances. 

Theorem IV.3: Given an instance (X, Y, a, b), with a feasible arrangement of the boxes on 

the pallet, and a second instance (Z, W, c, d), such that ( , , , ) ( , , , ),Z W c d X Y a b;  then there 

is a corresponding arrangement of box c d× on pallet Z W× . 

Proof: The proof follows directly from the proof of Lemma 2, in Dowsland [1984], because 

the proof only requires that the feasible partitions of instance (X, Y, a, b) be replicated by 

instance (Z, W, c, d), and this is clearly true, because ( , , ) ( , , )F X a b F Z c d⊂  and 

( , , ) ( , , )F Y a b F W c d⊂ .  Q.E.D. 

The relation between instances of relaxed and restrict classes is not symmetric, but 

is transitive.  Therefore, if ( , , , ) ( , , , ),X Y a b Z W c d≺  and ( , , , ) ( , , , ),Z W c d R S e f≺  then 

( , , , ) ( , , , )X Y a b R S e f≺ .  For example, (69,36,11,5) (56,29,9,4).≺  But 

(56,29,9,4) (43,23,7,3),≺  so (69,36,11,5) (43,22,7,3).≺  

Every instance of PLP in a relaxed class is a relaxation to instances in a restricted 

class.  As a result, an upper bound on the number of boxes that can be packed in an instance 

in a relaxed class is an upper bound for all its restricted classes.  If we are not able to 

compute a tight bound for a given instance, it might be possible to compute a tighter bound 

on an instance in a relaxed class, and apply the bound. 

Theorem IV.4: If (X, Y, a, b) and (Z, W, c, d) are instances of PLP, and if 

( , , , ) ( , , , ),X Y a b Z W c d≺  then N(X, Y, a, b) ≤ N(Z, W, c, d) . 

Proof: Suppose it is not true, and N(X, Y, a, b) > N(Z, W, c, d).  Then there exist a feasible 

arrangement of a b×  boxes on the X Y×  pallet with N(X, Y, a, b) boxes packed.  Because 

(Z, W, c, d) belongs to a relaxed class of (X, Y, a, b), by Theorem IV.3, every feasible 

arrangement obtained in (X, Y, a, b) can be replicated in (Z, W, c, d).  Therefore, the 
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corresponding arrangement can be produced in (Z, W, c, d), and N(X, Y, a, b) ≤ N(Z, W, c, 

d).  This is a contradiction.  Q.E.D. 

As an example, UN(26, 19, 7, 3) = 23, when using the previously described bounds.  

But (26,19,7,3) (18,13,5,2),≺  because (0,9) (18,5,2),F∈  and UN(18, 13, 5, 2) = 22, 

obtained with Barnes’ bound within the class.  Therefore, the upper bound for instance (26, 

19, 7, 3) can be reduced to 22, and the solution obtained with the five-block heuristic is 

verified to be optimal by this new bound.  We refer to the bound computed with this 

procedure as the Relaxed Class (RC) Bound. 

Table IV.4 presents the results of this new bound when applied to the instances 

from Table IV.3 not yet proven optimal by other bounds.  While the number of instances 

where this bound is useful is small, when compared with the total number of classes, we 

can see that this bound is tighter than the previous bounds on a large fraction of the classes 

still considered open. 

Number of 
boxes 

Total 
Number of 

Classes 

Classes 
with open 

results 
from 

Table IV.5

One-Block Two-Block Hollow-
Block Five-Block 

Classes 
with open 

results 

20 7,309 14 0 1 0 0 13
50 216,095 2,706 115 589 2 218 1,782

100 3,080,730 75,358 4,298 16,260 61 8,107 46,632

Table IV.4 Number of instances with an open result in Table IV.3 bounded by the RC 
bound in each group.   
The first three columns are from Table IV.3.  The next four columns contain the number of 
classes with optimal packing pattern generated by the given heuristic.  The last column 
contains the number of classes without a proven optimal solution after applying the AR 
bound, the MP bound, Barnes’ bound, the MAR bound, the SHPP bound, the SPP bound, 
and the RC bound. 

One way to identify relaxed classes is by applying Dowsland’s [1984] minimization 

of area ratio technique.  When the instance that minimizes the area ratio is located at the 

open boundary of an equivalence class, then this instance does not belong to that class, 

although we can get arbitrarily close to it.  This instance does not belong to the same class 

because its set of feasible partitions is larger, with at least one extra feasible partition.   

In our previous example, the instance (18, 13, 5, 2) is obtained when trying to 

minimize the area ratio for the class of (26, 19, 7, 3).  When minimizing the area ratio 

bound in the relaxed class, we verify that this is attained at a non-integral interior point 



73 

(2 8 4, 8 4, 8,1),+ +  with a ratio of 23.31.  This area ratio is not small enough to tighten 

the bound, but a solution obtained by scaling, and rounding to integer values, (482, 341, 

141, 50), is bounded by Barnes’ procedure at value 22.   

Another possible result is that another open boundary solution is generated, and the 

procedure is repeated until the bound is tighter, or the solution is an interior point.  An 

example of this chain of relaxed classes can be obtained with the instance (54, 30, 11, 5), 

with three relaxed classes being generated before the bound is tightened.  The relation 

among these classes is (54,30,11,5) (44,24,9,4) (34,18,7,3) (24,12,9,2).≺ ≺ ≺   The area 

ratio bound in the last class is 28, while it is 29 in the others. 

As the relaxed classes can be generated based on minimizing the area ratio bound, 

in some cases, the last class generated in the procedure finally has zero wasted area, but 

does not tighten the bound.  Because there is no wasted area, every feasible partition used 

when packing the instance in the restricted class must correspond to a perfect partition in 

the relaxed class, or there would be some wasted area.  But if only one feasible partition, in 

the length or width, corresponds to a perfect partition in the relaxed class, then the solution 

can be obtained with the two-block heuristic, or it is not feasible.  If we apply the two-block 

heuristic and don’t obtain the expected solution, then the bound in the restricted class can 

be reduced by at least one unit. 

This happens, for example, with instance (23, 19, 8, 3).  The area ratio bound for 

this instance is 18.  When minimizing this bound in the class, we obtain the instance (15, 

12, 5, 2), in the open boundary.  Because 15 is a multiple of 5 and 12 is even, we can pack 

it using a homogeneous block with 18 boxes and there is no wasted area.  This is the only 

pattern that can be used to pack 18 boxes and it is not feasible for instance (23, 19, 8, 3), as 

it uses the X-partition (3, 0).  If there are feasible packing patterns with 18 boxes for 

instance (23, 19, 8, 3), with a different arrangement, then this arrangement could be 

replicated in the relaxed class, so the bound for instance (23, 19, 8, 3) can be reduced to 17. 

3. Bound Based on Similarity of Classes 

The properties of the prior section can sometimes be extended in a way that a class, 

with a similar set of efficient partitions, can be used to calculate a bound for the solution of 

another class. 
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One such situation exists when the MSI of the class has a homogeneous perfect 

partition.  As seen previously, if a perfect partition of this type is present in the solution, 

then it can be transferred to the edge of the pallet.  In this case, we can solve a problem with 

reduced dimensions for the pallet and add this homogeneous block to generate a solution to 

the original problem.  If this homogeneous partition is the only perfect partition, then we 

have a tighter bound.  But when there is more than one perfect partition, then the bound 

cannot be used directly.   

Two possible situations can happen: the optimal packing pattern uses the 

homogeneous partition, or not.   

If the homogeneous partition is present in the solution, then there is a solution 

where this partition is located in the right, or top, edge of the pallet, as shown in Theorem 

IV.1.  In this case, we can solve an instance with reduced dimension by dividing the pallet 

into two rectangles.  One is perfectly packed with a homogeneous block, and the other is 

packed by some other procedure.   

Otherwise, if the homogeneous partition is not used in the optimal packing pattern, 

then it may be possible for another class to exist in which all efficient partitions, except for 

this homogeneous partition, are feasible.  In this case, any pattern produced in the initial 

class, without using this homogeneous partition, can be replicated.  But if, in this related 

class, it is shown that such a pattern does not exist, then the same is also true in the initial 

class. 

The larger of the bounds obtained in these two situations is a valid upper bound for 

the class.  The instance (37, 30, 8, 3) is an example of the use of this bound.  The set of 

perfect Y-partitions contains two partitions: (3, 2) and (0, 10).  The best bound for this 

instance, using the methods proposed above, is 46 boxes.  If the solution contains a (0, 10) 

partition then (37,30,8,3) max{ (37 8 ,30,8,3) 10 , 1,2,3,4} 45N N i i i= − ∗ + ∗ = = .  If the 

partition (0, 10) is not used, then all other feasible partitions are also feasible to the instance 

(24, 19, 5, 2).  But the optimal number of packed boxes for instance (24, 19, 5, 2) is 45, 

using the area ratio bound.  Therefore, if the Y-partition (0, 10) is used, the best result is 45.  

If it is not used, the best result is also 45.  Then UN(37, 30, 8, 3) = 45.   
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We refer to this bounding procedure as the Combined Perfect Partition and Relaxed 

Class (CPPRC) Bound.  Table IV.5 presents the results of this new bound when applied to 

the instances from Table IV.4 not yet proven optimal by other bounds. 

Number of 
boxes 

Total 
Number of 

Classes 

Classes 
with open 

results 
from 

Table IV.4

One-Block Two-Block Hollow-
Block Five-Block 

Classes 
with open 

results 

20 7,309 13 0 0 0 1 12
50 216,095 1,782 0 24 3 72 1,683

100 3,080,730 46,632 0 289 21 770 45,552

Table IV.5 Number of instances with an open result in Table IV.5 bounded by the CPPRC 
bound in each group.   
The first three columns are from Table IV.5.  The next four columns contain the number of 
classes with optimal packing pattern generated by the given heuristic.  The last column 
contains the number of classes without a proven optimal solution after applying the AR 
bound, the MP bound, Barnes’ bound, the MAR bound, the SHPP bound, the SPP bound, 
the RC bound, and the CPPRC bound. 

4. Extensions to the LP Bound 

Even when the identification of a relaxed class does not help directly in the 

computation of a tighter bound, it still can be used to help obtain better bounds using the 

LP approach described in Section III of Chapter II.   

Suppose we are computing an upper bound on a given instance, and that this 

instance has a relaxed class with smaller dimensions, and less wasted area.  We can use the 

MSI of this relaxed class when computing the LP bound, but only considering partitions 

that are feasible in the original instance. 

Let (Z, W, c, d) be an instance of PLP.  Let ( , , , ) ( , , , )X Y a b Z W c d; .  Then 

constraints (II-20) to (II-27) are replaced by 

 ,

( , ) ( , , )

i j

i j F Z c d

i x
H

b∈

∗
= ∑ , (IV.1)

 ,

( , ) ( , , )

f g

f g F W c d

f y
V

b∈

∗
= ∑ , (IV.2)

 
,

( , ) ( , , )
i j

i j F Z c d

x Y
∈

=∑ , (IV.3)

 
,

( , ) ( , , )
f g

f g F W c d
y X

∈

=∑ , (IV.4)
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, ,

( , ) ( , , ) ( , ) ( , , )
0i j f g

i j F Z c d f g F W c d
a i x b g y

∈ ∈

∗ ∗ − ∗ ∗ =∑ ∑ , (IV.5)

 
, ,

( , ) ( , , ) ( , ) ( , , )
0i j f g

i j F Z c d f g F W c d
b j x a f y

∈ ∈

∗ ∗ − ∗ ∗ =∑ ∑ , (IV.6)

 , 0, ( , ) ( , , )i jx i j F Z c d≥ ∀ ∈ , (IV.7)

 , 0, ( , ) ( , , )f gy f g F W c d≥ ∀ ∈ . (IV.8)

The advantage of using this new set of constraints is that the linear relaxation is 

tighter, and thereby may lead to an improved bound.   

Some additional changes are performed in the LP bound procedure described in 

Section III of Chapter II.  Nelissen [1995], among other extensions to the LP bound, 

proposes solving a knapsack problem with the wasted area of an optimal solution as the 

capacity of the knapsack, and the wasted area in each unit column, or row, as the weight.  

This idea can be inserted directly in the LP formulation by defining a target optimal wasted 

area, Waste.  If this targeted wasted area value cannot be achieved, then the bound can be 

reduced, and another target waste can be defined.  Two extra constraints, relative to this 

target waste, are included in the formulation: 

 
,

( , ) ( , , )
( ( )) i j

i j F Z c d
X i a j b x Waste

∈

− ∗ + ∗ ∗ =∑ , (IV.9)

 
,

( , ) ( , , )
( ( )) f g

f g F W c d
Y f a g b y Waste

∈

− ∗ + ∗ ∗ =∑ . (IV.10)

One example of the usefulness of this improved LP bound is observed with instance 

(116, 74, 10, 9), with a best-known upper bound of 95, but the best-known packing 

contains 94 boxes.  This is one of the instances reported by Scheithauer [2000] where the 

best-known packing does not attain the best-known upper bound.  The instance (68, 42, 6, 

5) is the last class generated in the computation of the relaxed classes using the 

minimization of area ratio bound procedure.  When applying the new LP bound, the bound 

is reduced to 94.   

5. Performance of New Bounds    

Table IV.6 presents the cumulative results displayed previously from Tables IV.1 to 

Table IV.5.  It does not contain complete results for the extended LP bound, because this 

new procedure was applied to a small set of the remaining open problems. 
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Number of 
boxes 

Classes with 
open results 
from Table 

IV.1 

Instances 
bounded with 
SHPP Bound 

Instances 
bounded with 
SPP Bound 

Instances 
bounded with 

RC Bound 

Instances 
bounded with 

CPPRC Bound

20 68  51 3 1 1
50 6,823  4,068 49 924 99

100 156,527 80,788 381 28,661 1,083

Table IV.6 Cumulative results of the SHPP, SPP, RC and CPPRC bounds.   
The first two columns are from Table IV.1.  The values on the SHPP column come from 
Table IV.2.  The values on the SPP column come from Table IV.3.  The values on the RC 
column come from Table IV.4.  The values on the CPPRC column come from Table IV.5.  
These results are obtained when applying the bounds in column order. 

As shown in Table IV.6, more than 70% of the instances not bounded exactly by the 

AR Bound, MP Bound, Barnes’ Bound and MAR Bound, are bounded using the new 

bounds proposed in this dissertation.   

Table IV.7 presents the results of the individual application of these bounds on the 

instances with open results from Table IV.1.  These numbers corresponds to instances 

where the mentioned bound is able to tighten the bound (reduce by at least 1 box), even 

when not being exact.   

Number of 
boxes 

Classes with 
open results 
from Table 

IV.1 

Bound tighten 
with SHPP 
procedure 

Bound tighten 
with SPP 
procedure 

Bound tighten 
with RC 

procedure 

Bound tighten 
with CPPRC 

procedure 

20 68  52 3 52 56
50 6,823  4,571 52 5,032 5,161

100 156,525 97,186 463 111,800 113,065

Table IV.7 Results of individually applying the SHPP, SPP, RC and CPPRC bounds.   
The first two columns are from Table IV.1.  The next four columns present the number of 
equivalence classes with the bound on the maximum number of boxes packed reduced with 
the application of the respective procedure.   

In order to compare the performance of the new proposed bounds with the results 

obtained by Nelissen [1995] with his extended LP bound, we apply the proposed bounds to 

a set of 187 instances of PLP whose correct bounds are not computed by other methods.  

Nelissen [1995] reported that his procedure is not able to tighten the bound for 36 instances.  

In our case, the best-computed bound is not exact for only six instances. 

Only about 1.5% of the equivalence classes of PLP with at most 100 boxes may 

require a more complex algorithm to deliver the optimal solution, although in some cases it 

may just require a better bounding procedure to confirm the optimality of a known packing 

pattern. 
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D. NEW RECURSIVE HEURISTICS FOR PLP 

In this dissertation, we propose new recursive heuristics to solve PLP.  The first 

heuristic, named the G5-heuristic, can be regarded as a combination of the heuristics 

proposed by Nelissen [1993], Scheithauer and Terno [1996], and Morabito and Morales 

[1998].  The second one, named Higher Order Non-Guillotine (HONG) heuristic, solves 

some of the problems encountered when dealing with problems with more than 50 boxes to 

pack. 

1. The G5-Heuristic 

The heuristic proposed by Nelissen [1993] combines a few simple heuristics into a 

recursive heuristic.  The number of recursion steps is limited to reduce run time. 

The heuristic proposed by Scheithauer and Terno [1996], the G4-heuristic, 

recursively applies the four-block heuristic.  There is no a priori limitation on the number of 

recursive calls, and bounds are used to decide if further searches in the recursion tree are 

necessary.  The G4-heuristic does not identify optimal solutions that do not present G4-

patterns, and unlimited recursion may result in long run times when solving instances with 

a large number of boxes. 

The heuristic proposed by Morabito and Morales [1998], referred to here as M&M, 

uses the idea of 1st-order cuts, discussed in Section I.E, and the solutions generated present 

1st-order patterns.  This heuristic has a larger solution space than the G4-heuristic, and it 

may take longer to enumerate all solutions. 

The G5-heuristic also looks for 1st-order patterns, but tries to reduce run times by 

applying the hollow block heuristic.  The hollow block pattern, as shown in Figure IV.1, is 

a G4-pattern, and also a 1st-order pattern, but can be identified much faster by the hollow 

block heuristic.  Another characteristic of the G5-heuristic is that there is only one level of 

recursion. 

There are four main loops in the algorithm, sequentially assigning the dimensions of 

the four blocks in corners of the packing pattern.  The fifth, or central, block has its 

dimensions defined by the other blocks as in the five-block heuristic.  Each of these five 

blocks has a packing pattern computed using the hollow block, one-, two-, and five-block 

heuristics, or the G5-heuristic, but with no additional recursive call.   
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The wasted area within each block is also computed.  At each step of the algorithm, 

after defining the dimensions of a block, the cumulative sum of wasted areas is computed, 

preventing the exploration of patterns producing too much waste.   

In order to avoid looking at symmetric patterns, the block with the most boxes 

packed, with the exception of the central block, is defined to be the first block at the lower 

left corner.  Whenever a pattern is produced with another block having a larger number of 

boxes, the execution of the algorithm moves to the next pattern.  This is a different strategy 

from the G4 and M&M heuristics. 

As implemented in the G4-heuristic, we keep track of all partial patterns produced.  

Therefore, the solution to the packing problem of a block with given dimensions is stored 

when it is first computed, and is used again whenever a block with the same dimensions is 

encountered later in the procedure. 

Morabito and Morales [1998] present the computation results obtained with their 

heuristic to selected instances from the literature, with run times recorded on a Pentium 100 

MHz personal computer.  Scheithauer has an implementation of the G4-heuristic available 

for download from the Internet [CADAP 2002].  We run both G4 and G5 heuristics, on the 

same set of problems, on a Pentium 133 MHz personal computer, so the run times could be 

compared with those reported by Morabito and Morales (Table IV.7).  As described by 

Morabito and Morales, problems D1 and D2 are from Dowsland [1984], N1 to N5 from 

Nelissen [1994], and ST1 to ST5 from Scheithauer and Terno [1996]. 
Run Time (Sec) ID Instance MSI N M&M G4 G5 

D1 (22,16, 5, 3) (22, 16, 5, 3) 23 0.10 0.00 0.00
D2 (86, 82, 15, 11) (23, 22, 4, 3) 42 0.50 0.05 0.06
N1 (43, 26, 7, 3) (43, 26, 7, 3) 52* 1.60 0.06 0.50
N2 (87, 47, 7, 6) (87, 47, 7, 6) 97 46.30 1.21 2.42
N3 (153, 100, 24, 7) (109, 71, 17, 5) 90 0.10 1.21 0.01
N4 (42, 39, 9, 4) (42, 39, 9, 4) 45 2.00 0.11 0.25
N5 (124, 81, 21, 10) (64, 41, 11, 5) 47 5.50 0.16 0.11

ST1 (40, 25, 7, 3) (40, 25, 7, 3) 47 2.10 0.11 0.19
ST2 (52, 33, 9, 4) (52, 33, 9, 4) 47 3.10 0.11 0.19
ST3 (57, 44, 12, 5) (57, 44, 12, 5) 41 0.90 0.11 0.13
ST4 (56, 52, 12, 5) (56, 52, 12, 5) 48 2.20 0.11 0.21
ST5 (300, 200, 21, 19) (127, 85, 9, 8) 149 0.10 9.23 0.01

Table IV.8 Run times obtained with three different heuristics, when solving a selected set of 
problems from the literature.   
* Indicates that the solution is not optimal. 



80 

The G5-heuristic is slower than the G4-heuristic, and faster than the M&M heuristic 

in almost all instances.    

Scheithauer [2000] provided a list with 206 instances, from a larger set called Cover 

II by Nelissen [1993], containing instances satisfying constraints (II.28), (II.29), and (II.31).  

These 206 instances are not solved to optimality by Nelissen’s heuristic.  Scheithauer 

[2000] reports that the G4-heuristic is able to solve 167 of these instances.  The G5-

heuristic is able to solve the same 167 instances, and solves two additional instances, (121, 

120, 16, 9), and (107, 65, 10, 7).  These two instances have solutions with 1st-order patterns 

that are not G4-patterns.  On instances in which both heuristics find the optimal solution, 

the G4-heuristic is faster than the G5-heuristic.   

Table IV.9 presents the number of instances not previously solved with the simple 

heuristics mentioned in Section C with a proven optimal solution obtained with the G5-

heuristic.   

Number of boxes Total Number of 
Classes 

Classes with Open 
Results from Table 

IV.6 

Solved with G5-
Heuristic 

Classes with open 
results 

20 7,309 12 10  2
50 216,095 1,683 1,449  234

100 3,080,730 45,552 38,546 7,006

Table IV.9 Number of instances from table IV.6 without a previously proven optimal 
solution, solved using the G5-heuristic.   
The first three columns are from Table IV.6.  The next column contains the number of 
classes with optimal packing pattern generated by the G5-heuristic.  The last column 
contains the number of classes without a proven optimal solution after applying the AR 
bound, the MP bound, Barnes’ bound, the MAR Bound, the SHPP bound, the SPP bound, 
the RC bound, and the CPPRC bound. 

Another important result is that the difference between the solution generated by the 

G5-heuristic and the best possible solution, as defined by the available upper bounds, is at 

most one box for all problems.  As it is shown in the next section, with the application of an 

exact algorithm, the G5-heuristic generates optimal solutions to all instances of PLP with 

AR bound up to 51 boxes, and approximately 99.999% of all instances with AR bound of 

up to 100 boxes, differing at by one box in the 0.001% (60 classes) remaining instances.  

Therefore, using a procedure exploring non 1st-order patterns can improve the solution by at 

most one box. 
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2. Higher Order Non-Guillotine Heuristics 

As the number of boxes that can be packed increases, so does the variety of the 

optimal patterns.  Morabito and Morales [1998] present a non 1st-order pattern solution to 

instance (43, 26, 7, 3), obtained using a MIP model of PLP and solved using GAMS 2.50 

[GAMS 2000] with the OSL 2 solver [IBM 2000].  They report that the solver needed more 

than 30 minutes, on a Pentium 100 MHz personal computer, to find the optimal solution, 

shown in Figure IV.5.  The borders of each block are reinforced so it is easier to observe 

that there are 8 blocks, and that these blocks do not form a 1st-order pattern.  This is one of 

the instances not solved by the G5-heuristic in the COVER II set.    

 
Figure IV.5 Non 1st-order pattern solution for the class of instance (43, 26, 7, 3). 

 The Higher-Order Non-Guillotine (HONG) heuristics have been developed, 

initially, to verify if other instances in the same set present the same type of arrangement.  

They work by dividing the pallet in at most eight blocks, distributed as shown in Figure 

IV.6.  As can be seen, all three patterns are not 1st-order.  The pattern in Figure IV.6 (a) is a 

vertical pattern, because it is possible to draw a vertical line crossing four blocks.  A 

horizontal pattern, where a horizontal line crosses four blocks, is shown in (b).  The last 

pattern, (c), is named a central pattern. 

The implementation of the HONG heuristics is an extension of the G5-heuristic, but 

has up to five additional loops, for a total of nine nested loops.  Each of these eight blocks 

can be packed using the non-recursive G5-heuristic.  We implemented the three versions of 

the heuristic.  We are not able to identify any characteristics of an instance indicating which 
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version is the best one to apply in each case, and because of the relatively (when compared 

with the G5-heuristic) long run times associated with each version of the algorithm, we 

propose to execute all versions in parallel, halting when a solution is obtained by one of the 

three versions. 

 

Figure IV.6 Non 1st-order patterns explored by the HONG heuristic.   
The pattern in (a) is a vertical pattern; (b) shows a horizontal pattern; and (c) is a central 
pattern.   

Table IV.9 lists the instances of the COVER II set, not previously solved by other 

heuristics, which are solved using the HONG heuristics.  The run times shown correspond 

to the time required by a Pentium III 600 MHz computer, using the version of the heuristic 

(vertical or horizontal) that obtains the optimal solution for each instance.  If all versions 

are used in parallel, we should observe computational effort roughly three times the values 

listed. 
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Instance 
Number of 

Boxes 

Run Time 

(Sec) 

 
Instance 

Number of 

Boxes 

Run Time 

(Sec) 

(43,26,7,3) 53 0.50  (76,74,13,5) 86 345.54 

(49,28,8,3) 57 0.99  (106,100,16,7) 94 11.26 

(61,35,10,3) 71 2.63  (83,82,11,7) 88 3.48 

(61,38,10,3) 77 3.66  (104,69,12,7) 85 2.10 

(67,37,11,3) 75 3.36  (103,86,11,8) 100 15.05 

(67,40,11,3) 81 7.51  (104,71,11,7) 95 20.47 

(141,119,21,8) 99 88.17  (75,51,8,5) 95 6.91 

(93,46,13,4) 82 15.26  (108,71,11,7) 99 10.61 

(63,44,8,5) 69 3.80  (78,51,8,5) 99 4.54 

(57,34,7,4) 69 2.64  (61,38,6,5) 77 0.86 

(106,59,13,5) 96 17.84  (108,65,10,7) 100 2.44 

(141,71,13,8) 96 18.13  (164,83,14,11) 88 3.38 

(74,73,13,5) 82 30.45  (105,53,9,7) 88 2.83 

(74, 49, 11, 4) 82 0.28  (57, 34, 7, 4) 69 1.70 

(127, 121, 23, 7) 95 1.20  (122, 86, 16, 7) 93 1.97 

(106, 59, 13, 5) 96 8.68     

Table IV.10 Instances of the set COVER II solved to optimality by the HONG heuristics. 
Run times correspond to the time required by the version of the algorithm (vertical, 
horizontal, or central) that obtains the optimal solution faster (in some cases, more than 
one version generates an optimal packing pattern). 

In addition to instances in Table IV.9, the HONG heuristic is able to solve to 

optimality other instances not included in the COVER II set [Nelissen 1993].  Table IV.10 

presents the results of the application of the HONG heuristic to the instances with open 

results after the using the G5 heuristic, from Table IV.10. 

Number of boxes Total Number 
of Classes 

Classes with Open 
Results from Table IV.8 

Solved by 
HONG 

Heuristic 

Classes with open 
results 

20 7,309 2 0  2
50 216,095 234 0  234
100 3,080,730 7,006 54 6,952

Table IV.11 Number of instances, from table IV.8, without a proven optimal solution, 
solved using the HONG heuristics. 
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E. A NEW EXACT ALGORITHM FOR PLP – THE HVZ ALGORITHM 

Even with the development of new bounds and new heuristics, not all instances 

have a proven optimal solution given by a heuristic.  In some situations it still might be 

desirable to find the optimal solution, even if it might require the extra run time of an exact 

algorithm.  In order to solve, or verify optimality of, these remaining problems, we 

developed a new exact algorithm. 

We initially explore different ways to represent a packing pattern, considering the 

possibility of coding the packing pattern of N boxes on a binary string with length N.  A 

coordinate system with origin at the lower left corner of the pallet is used, with the left 

lower corner of box i , when packed in the pallet, represented by ( , )i ix y .  In the coding, an 

H-box is represented by the letter H, and a V-box by the letter V.  Each box is packed in the 

feasible position that yields the minimum sum of coordinates, i.e., i ix y+ .  In case of ties, 

the position minimizing iy  is selected.  A position is feasible if the box does not overlap 

with another box packed previously, and is completely packed within the pallet.   

Figure IV.7 presents a feasible packing for instance (27, 18, 7, 4), with 16 boxes.  

The corresponding string is HVHVVVHVVVVVVHVH. 

 

Figure IV.7 Feasible packing pattern for instance (27, 18, 7, 4).   
The pattern can be represented by the binary string HVHVVVHVVVVVVHVH, with H 
indicating an H-box and V a V-box.   
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If every packing pattern could be uniquely represented this way, we could use the 

coding scheme to create an algorithm with complexity (2 )NO  for verifying the feasibility 

of packing N boxes in an instance of PLP.  Although still exponential, this algorithm would 

be much faster than a general algorithm for 2D-KP, like the one proposed by Murata et al 

[1995].  Using the bounds on the number of V-boxes and H-boxes obtained using the LP 

bound, we could reduce this complexity even further.   

 

Figure IV.8 Feasible packing pattern for instance (7, 7, 5, 2).   
This packing pattern cannot be represented with the binary coding scheme.   

Unfortunately, there are feasible packing patterns that cannot be represented by this 

coding scheme.  A simple example is observed in instance (7, 7, 5, 2), and the packing 

pattern depicted in Figure IV.8.  The corresponding string would be HVVH, but when 

trying to pack the third box, the procedure would place it at position (2, 2), not at position 

(5, 0).   

To deal with this situation, we modify our coding scheme to include Z, for zero, 

representing the position of the left lower corner of a wasted rectangular area.  In the 

example above, the packing pattern is now coded by HVZVH.  The Z label occupies the 

position (2, 2).  The next available position is (5, 0), where the next V-box is packed.  The 

only position left to pack an H-box is (2, 5). 
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The wasted rectangle has length and width at least one unit long, but may have 

larger dimensions, depending on the use of normal packing patterns.  In this case, the 

wasted area covers the region up to the next positions that could be used to place a box in a 

normal packing pattern, i.e., positions with the coordinates corresponding to integral 

combinations of a  and b.  In the example, the wasted area has dimensions 2 2× , because 

positions (3, 2), (2, 3) and (3, 3) cannot be obtained as a combination of 5 and 2. 

As the amount of wasted area is registered whenever a Z label is included in the 

string, we can use this coding idea in a depth-first search, fathoming the branches of the 

search tree presenting too much wasted area. 

1. Implementation of HVZ Algorithm 

The HVZ Algorithm is an implementation of depth-first search mentioned above.  

Each node of the search tree corresponds to visiting the point with minimum sum of 

coordinate values.  The algorithm selects between placing a box, H-box or V-box, or 

marking the region as wasted.  If a box is placed, then all coordinate points covered by the 

box are labeled as used.  If marked as wasted, only one coordinate point is labeled, and the 

area of the wasted region is added to the total wasted area, TW.  The next node to be 

examined corresponds to the next unlabeled coordinate point.  If, at any given step of the 

algorithm, the maximum allowed amount of wasted area, MW, is surpassed ( )TW MW> , 

then the algorithm backtracks.  The algorithm terminates if a feasible packing of N boxes is 

obtained, or if all possible labels are explored. 

The set of coordinate points is defined in the initialization the algorithm, and 

corresponds to the cartesian product of the sets of feasible partitions of the length and 

width.  In our implementation of the HVZ algorithm, we use two arrays to represent these 

coordinate points: 

• A two-dimensional array, with the first dimension corresponding to feasible 

partitions of the length, and the second to feasible partitions of the width.  This 

array is used when labeling the coordinate point covered by a box; and 

• A one-dimensional array, with pointers to the coordinate points, sorted by sum 

of coordinate values, and ties solved by smaller width.  This array is used to 

identify the next unmarked point. 
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After some experimentation with the HVZ algorithm, we identified some strategies, 

performed at each node, that can yield to shorter run times: 

• If the number of boxes loaded is less than 2N   , and the total wasted area is 

already larger than half of the maximum allowed, 2TW MW> , then the 

algorithm backtracks.  This is possible because of the symmetry of the packing 

patterns.  In this case, the complement of the packing pattern contains at least 

2N  boxes and at most 2MW  wasted area, and can be obtained at a later step 

of the algorithm. 

• After placing a box, verify that there is enough space between the box and the 

borders of the pallet to pack another box.  If not, the region is marked as wasted. 

• If the optimal packing pattern is formed with smaller blocks packed together, 

and if each of these blocks can be packed in different ways, then we have 

several similar, or equivalent, solutions.  In order to avoid searching for 

solutions on patterns similar to others already identified as not optimal, we 

verify if the box being packed completes a block.  If this is the case, we verify if 

a block with the same dimensions was investigated before, and if the 

arrangement of this block is the same.  If it is not, we backtrack.    

2. Results Obtained with the Algorithm 

As an empirical performance comparison, we apply the HVZ algorithm to the same 

instances listed in Table IV.8, and run times are in Table IV.11, also obtained with a 

Pentium 133 MHz computer.  The run times obtained with the G5-heuristic are also 

included.  When the run time exceeded 60 minutes, we stopped the execution of the 

algorithm.  This situation is identified with a dash in the table.   
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Run Time (Sec) 

ID Instance MSI N G5-Heuristic Exact 
Algorithm 

D1 (22,16, 5, 3) (22, 16, 5, 3) 23 0.00 0.0
D2 (86, 82, 15, 11) (23, 22, 4, 3) 42 0.06 0.0
N1 (43, 26, 7, 3) (43, 26, 7, 3) 53 0.50 1.2
N2 (87, 47, 7, 6) (87, 47, 7, 6) 97 2.42 –
N3 (153, 100, 24, 7) (109, 71, 17, 5) 90 0.00 0.2
N4 (42, 39, 9, 4) (42, 39, 9, 4) 45 0.25 2.0
N5 (124, 81, 21, 10) (64, 41, 11, 5) 47 0.11 8.0
ST1 (40, 25, 7, 3) (40, 25, 7, 3) 47 0.19 1.1
ST2 (52, 33, 9, 4) (52, 33, 9, 4) 47 0.19 3.4
ST3 (57, 44, 12, 5) (57, 44, 12, 5) 41 0.13 0.8
ST4 (56, 52, 12, 5) (56, 52, 12, 5) 48 0.21 15.0
ST5 (300, 200, 21, 19) (127, 85, 9, 8) 149 0.00 –

Table IV.12 Run times obtained with the HVZ algorithm and the G5-heuristic for selected 
problems in the literature.   
A dash (–) indicates instances without a computed optimal solution within 60 minutes. 

This new exact algorithm is able to obtain solutions to three additional instances 

from the COVER II set.  These instances, shown in Figure IV.9 are (86, 52, 9, 5), (95, 92, 

11, 8), and (74, 46, 7, 5).   
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Figure IV.9 Optimal packing patterns obtained using the HVZ algorithm, for instances 
(86,52,9,5), (95, 92, 11, 8), and (74,46,7,5).   
These are non 1st-order patterns. 
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3. Complexity of the HVZ Algorithm 

As discussed in the beginning of this section, using a HVZ string to code any 

packing pattern requires at most N W+ characters, where N is the number of boxes packed 

and W is the wasted area in the optimal packing pattern.  Each of the N characters 

corresponding to packed boxes can take two different values, with 2N  ways to assign these 

values.  If W characters are necessary to represent wasted areas, then there are ( )N W
W
+  ways 

of selecting the position of these characters in the string.   

It takes 2(( ) )O N W+  to verify if the pattern coded by a given string is feasible.  As 

the number of items packed and amount of wasted area gets larger, the computational effort 

increases exponentially. 

F. A NOT SO EXACT ALGORITHM 

Bhattacharya et al [1998] propose an algorithm, PalDepth, for PLP, using a new 

concept they called Maximal Breadth Filling Sequence (MBFS).  This new concept, based 

on the idea of efficient partitions, solves PLP by sequentially filling the pallet with boxes 

forming an efficient partition of the remaining region.  The main characteristic is that a 

partition is always packed with all V-boxes placed after any H-boxes.  Different packing 

strategies are organized in a tree-like structure, and tested depth-first.  They show that the 

algorithm outperforms others in the literature. 

When packing the partition (n, m) in the pallet, there can be ( )n m
n
+ ways of ordering 

the V-boxes and H-boxes.  If only one ordering, with m V-boxes after n H-boxes, is used, 

then there is a substantial reduction in the solution space.  An algorithm exploring this idea 

can be much faster than others.  To justify this approach, the authors present their proof of 

the validity of only considering this ordering.  Their proof is based on showing that any 

optimal pattern can be converted into a pattern generated by the PalDepth algorithm.  But 

their proof is not correct, and it is possible to find optimal solutions to PLP that cannot be 

generated by their algorithm. 

 We present a counterexample.  In Lemma 1, Bhattacharya et al [1998] claim that 

given any optimal arrangement for an instance of a PLP, it can be converted to an 
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arrangement in which the top row contains all V-boxes to the left of all H-boxes.  The proof 

states that a sequential rearrangement of the boxes produces an alternate optimal solution 

with the necessary arrangement. 

In Figure IV.10, we perform the steps established in their constructive proof, until it 

is not possible to follow it further, and an optimal solution is not obtained.  Figure IV.10 (a) 

shows an optimal arrangement for the instance (43, 26, 7, 3).  The first step is to reorganize 

the top row so that the V-boxes are to the left of the H-boxes, as shown in (b).  The process 

is repeated, as required, for the next rows of boxes, in (c) and (d).  But in (d), it is possible 

to observe that the wasted area is already larger than in the optimal solution.  When trying 

the next step, in (e), we verify that it is not possible to pack the next row of V-pieces.  Of 

course, this transformation could be performed by rotating the pallet vertically, but this step 

is not considered in their proof.  Also, even after this rotation, the PalDepth algorithm 

cannot produce the resulting packing pattern. 

Although Lemma 1 is not true and is used by Bhattacharya et al [1998] to prove the 

correctness of the PalDepth algorithm, we still haven’t shown that their algorithm isn’t 

correct.  Using our HVZ algorithm, with the search reduction strategies disabled, we 

generate all possible optimal arrangements for instance (43, 26, 7, 3).  We obtained 12 

different solutions, corresponding to rotations and reflections of the whole pallet, and the 

central hollow block, and none of these could have been achieved with the PalDepth 

algorithm. 
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Figure IV.10 Steps using the procedure proposed by Bhattacharya et al [1998]. 
The objective is to convert an optimal pattern for instance (43, 26, 7, 3) into another 
optimal pattern with all V-boxes in the top row placed to the left of all H-boxes. 

 
 
 
 
 
 
 
 
 
 
 



93 

V. THE MULTIDIMENSIONAL KNAPSACK PROBLEM 

This chapter surveys MD-KP literature with emphasis on exact algorithms accepting 

non-guillotine cut patterns.  It also contains the analysis of a MIP model for 2D-KP, 

focusing on identifying some of the aspects of model building that affects computational 

performance. 

A. LITERATURE ON SOLVING MD-KP 

In this Section, we review existing heuristics, approximation algorithms, and exact 

algorithm for MD-KP.   

1. Heuristics and Approximation Algorithms for MD-KP 

Moon and Moser [1967], among other results, present upper bounds on the area S of 

a two-dimensional bin necessary to pack a list I of items.  This upper bound is based only 

on the total area of the items, *i i
i I

A l w
∈

=∑ , and the largest side among all items, 

max{ , }i ii I
D l w

∈
= .  If all items in the list are squares, then the list can be packed in any square 

bin with side 2, .B B D A D≥ + −  The list can also be packed in any rectangular bin with 

2 ,S A≥  and shorter side B, if D ≤ B.  If items and bin are rectangular, it is shown that the 

items can be packed in a bin with shorter side B, with D ≤ B, if 22 2.S A B≥ +  

The proof, in all cases, is constructive, and is based on a packing algorithm.  The 

algorithm initially sorts items from largest to smallest, and then packs the items in layers, as 

in shelves, with the height of each layer defined by the largest item in it.  Each item is 

always placed in the lowest, and leftmost, position that accepts the item, without violating 

the borders of the bin.  Therefore, the algorithm fixes the order in which items are packed, 

defines where to pack each item, fixes the orientation, and generates only guillotine cut 

patterns.  Figure V.1 presents a typical layout obtained with this approach. 
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Figure V.1 Typical packing pattern obtained with the packing algorithm described by 
Moon and Moser [1967]. 

Meir and Moser [1968], using a variation of the same algorithm, improve the upper 

bound on the area of the bin in the general case, with rectangular items and bins, and show 

that if 22 8,S A B≥ +  then the set of items can be packed. 

George and Robinson [1980] also explore the idea of using layers of items when 

packing three-dimensional boxes in a container.  As in the work of Meir and Moser [1967], 

items are sorted by size and packed in layers on the length of container.  The length of each 

layer is the length of the first item packed in it.  If an empty space is encountered between 

layers, then a filling scheme is employed in this space.  Whenever possible, boxes of same 

dimensions are packed together.  The authors report good practical results, although the 

worst-case performance is not analyzed.    

The algorithm proposed by Coffman et al [1980], First-Fit Decreasing-Height 

(FFDH), for 2D-SPP generates patterns similar to those produced by Moon and Moser 

[1967] and George and Robinson [1980].  In this case, the dimensions considered by the 

authors for the bin are width and height.  The width of the bin is fixed and the objective is 

to minimize the height of packing all items.  This algorithm obtains heights that are at most 

1.7 times larger than the height observed in an optimal solution. 

Wang [1983] presents a method for generating solutions for 2D-KP based on the 

idea of combining items together into larger rectangles and combining these again into 

larger rectangles, and solves instances with up to 20 items.  Further work with this 

approach includes Oliveira and Ferreira [1990] and Daza et al [1995]. 

Murata et al [1995] introduce the idea of Sequence Pairs, and show that it can be 

used to represent and solve 2D-KP problems.  A Sequence Pair representation of the 
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packing pattern of a set { , , , ,...}I a b c d=  of items consists of two strings, each with length 

I , determined on an oblique grid as shown in Figure V.2.   

 

Figure V.2 Using Sequence Pairs to represent a packing pattern for 2D-KP.   
The packing pattern in (a), with items {a, b, c, d, e, f} is represented by the sequence pair (a 
b d e c f, c b f a d e).  The order of the symbols in the string determines the position of the 
item in the oblique grid, and defines the packing pattern (after Kang and Dai [1998]). 

Considering 3D-KP, Li and Cheng [1990] demonstrate that packing strategies as the 

FFDH have unbounded worst-case performance bounds in 3D-SPP and propose a new 

approximation algorithm which generates packing with height at most 3.25 times larger 

than in an optimal solution.  Li and Cheng [1992] subsequently study other approximation 

algorithms. 

Chen et al [1995] propose an exact algorithm for container loading based on a MIP 

model, and show it can be used to solve an instance of 3D-KP with six items. 

Scheithauer and Sommerweiss [1998] propose another approach for 2D-KP, not 

based on layers.  Their procedure, the Four-Block heuristic based on the G4-heuristic for 

PLP [Scheithauer and Terno 1996], packs items with identical dimensions in blocks, and 

uses up to four blocks placed in the corners of the bin.  Each block is composed with 

different items, as in Figure V.3. 
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Figure V.3 Packing pattern generated with the 4-Block heuristic, proposed by Scheithauer 
and Sommerweiss [1998]. 

Scheithauer and Sommerweiss [1998] also discuss some practical conditions 

influencing the feasibility of packing patterns.  These conditions, usually observed in real 

world applications, are: 

Weight: The total weight of the items packed in a pallet has to be less than a 

structural limit. 

Placement: Some items, because of their density, weight, or contents may not be 

placed on top of other items. 

Splitting: If the demand of a given item is large enough to occupy a single pallet, 

then a pallet packed only with this item has to be used.  This restriction has the 

object of reducing loading costs.  This may also apply to a full layer of the same 

product on a pallet. 

Connectivity: All items of a given type are to be packed as a block in a pallet.  This 

reduces the number of trips the loader must perform to the storage area. 

Stability:  Packing patterns have to be stable for transport. 

Bischoff and Ratcliff [1995] and Adams [1996] address these and other conditions 

related to container loading. 
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2. Exact Algorithms for 2D-KP  

Gilmore and Gomory [1965], while studying solutions for MD-BPP, are the first to 

propose an algorithm for solving MD-KP.  Noting that “there is no efficient method for 

solving the generalized knapsack problem of the higher dimensional problem”, they 

concentrate their effort on the version of the problem with two-stage guillotine cutting: the 

stock rectangle is first slit down its length into strips, and then each individual strip is cut 

across its width.  A third trimming stage is used, if necessary.  The orientation of the items 

is fixed, with no rotations allowed.   

Figure V.4 shows the generation sequence of a two-stage guillotine-cutting pattern, 

with a third trimming stage. 

If the application of the two-stage guillotine pattern and fixed orientation 

restrictions are not dictated by operational conditions, as may be the case in the lumber 

industry [Gilmore and Gomory 1965], solutions obtained with this approach may “differ” 

from an optimal solution produced without these restrictions by as much as 100%, as 

shown in Chapter I, Section E. 

Barnett and Kynch [1967] show that if two types of items are to be packed, both 

with unit width and relatively prime lengths, and if the bin is large enough, then there is a 

packing pattern with zero wasted area. 
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Figure V.4 Two-stage guillotine cutting pattern studied by Gilmore and Gomory [1965].   
(a) The stock rectangle is first slit down its length into strips, and (b) then each individual 
strip is cut across its width.  A third trimming stage (c) is used, if necessary. 

Beasley [1985b] proposes the first exact algorithm for the non-guillotine cutting 

version of 2D-KP.  He formulates the problem as an integer linear program.  In his 

formulation, a large stock rectangle (bin) with sizes X × Y is to be cut into a set I of 

different types of items, with piece i (i ∈ I) having dimensions ,i il w×  value vi, and a range, 

(pi, qi) for the number of copies packed.  The objective is to maximize the total value of the 

pieces cut.  Normal cutting patterns are used. 

Let 
1

{0 | , 0,..., , }
m

i i i i
i

L r X r l q i Iα α
=

= ≤ ≤ = = ∈∑  be the set of possible cut positions 

in the length, and 
1

{0 | , 0,..., , }
m

i i i i
i

W s Y s w q i Iβ β
=

= ≤ ≤ = = ∀ ∈∑  be the set of cut positions 

in the width – the use of normal cutting pattern restricts cut positions to linear combinations 

of the length and width of the items.  The ordered pair (r, s), or (t, u), where , ,r L s W∈ ∈  

, ,t L u W∈ ∈  indicates a possible cutting point in the stock.  The dimensions of stock 
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rectangle and items are only used in a pre-process phase, to compute the data used in the 

model.  A model formulation follows. 

 

Indices: 

 i  Type of items to cut, i I∈ . 

 ,r t  Cut position in the length, ,r L t L∈ ∈ . 

 ,s u  Cut position in the width, ,s W u W∈ ∈ . 

 

Data: 

 irstua  1 if piece type i, when cut with its bottom left corner at the point ( , )r s . 

cuts out the point ( , )t u  and 0 otherwise. 

 ip  Lower bound on the number of items type i . 

 iq  Upper bound on the number of items type i . 

 iv  Value of item type i . 

 

Variables: 

 irsz  1 if a piece of type i is cut with its bottom left corner at (r, s) and 0 

otherwise. 

 

Formulation: 

i irs
i I r L s W

Max v z
∈ ∈ ∈
∑ ∑∑ , 

subject to 

 
1, ,irstu irs

i I r L s W
a z t L u W

∈ ∈ ∈

≤ ∀ ∈ ∈∑∑∑ , (V.1)

 ,i irs i
r L s W

p z q i I
∈ ∈

≤ ≤ ∀ ∈∑∑ , (V.2)

 {0,1}, , ,irsz i I r L s W∈ ∀ ∈ ∀ ∈ ∀ ∈ . (V.3)

Constraints (V.1) guarantee that only one item occupies any given region inside the 

bin.  Constraints (V.2) enforce lower and upper bounds on number of copies of each item.  
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Using a lagrangean relaxation of this formulation to provide upper bounds, and a 

specialized branch-and-bound search, Beasley [1985b] solves problems with up to 22 items 

of 10 different types. 

Hadjiconstantinou and Christofides [1995] revisit Beasley’s work, and propose a 

new integer linear program for 2D-KP:   

Indices: 

 i  Type of items to be packed, i I∈ . 

 j  Order of item of type i . 

 r  Cut position in the length, r L∈ . 

 s  Cut position in the width, s W∈ . 

 t  Position of the left limit of an unused region, 0,..., 1t X= − . 

 u  Position of the lower limit of an unused region, 0,..., 1u Y= − . 

Data: 

 il  Length of item type i . 

 iw  Width of item type i . 

 ip  Lower bound on the number of items type i . 

 iq  Upper bound on the number of items type i . 

 iv  Value of item type i . 

 

Variables: 

 ijrx  1 if the thj  copy, 1,..., ij q= , of item i  is cut with its bottom left corner 

at position  r ∈ L and 0 otherwise. 

 ijsy  1 if the jth copy, 1,..., ij q= , of item i  is cut with its bottom left corner at 

position s ∈ W and 0 otherwise. 

 tuz  1 if point ( , ), 0,..., 1, 0,..., 1t u t X u Y= − = −  has not been cut out by any 

item i  and 0 otherwise. 
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Formulation: 

1

iq

i ijr
i I j r L

Max v x
∈ = ∈
∑ ∑∑ , 

subject to 

 1 1

(2 ) , , 1,..., , ,
i is w r l

tu ijr ijs i i i
u s t r

z x y l w i I j q r L s W
+ − + −

= =

≤ − − ∀ ∈ = ∈ ∈∑ ∑ ,    (V.5)

 1, , 1,...,ijr i
r L

x i I j q
∈

≤ ∀ ∈ =∑ , (V.6)

 , , 1,...,ijr ijs i
r L s W

x y i I j q
∈ ∈

= ∀ ∈ =∑ ∑ ,   (V.7)

 1

1 1, 0

, 0,..., 1
i

i

q t Y

i ijr tu
i I j r t l r L u

w x z Y t X
−

∈ = = − + ∈ =

+ = = −∑ ∑ ∑ ∑ ,   (V.8)

 1

1 1, 0

, 0,..., 1
i

i

q u X

i ijs tu
i I j s u w s w t

l y z X u Y
−

∈ = = − + ∈ =

+ = = −∑ ∑ ∑ ∑ , (V.9)

 , {0,1}, , 1,..., , ,ijr ijs ix y i I j q r L s W∈ ∈ = ∀ ∈ ∀ ∈ , (V.10)

 {0,1}, 0,..., 1, 0,..., 1tuz t X u Y∈ = − = − . (V.11)

Constraints (V.5) set the value of tuz to zero if ( , )t u  is inside a region occupied by 

an item.  Because of constraints (V.6) and (V.7), each item can be packed at most once in 

the bin.  Constraints (V.8) and (V.9) limit the number of items that can be packed at the 

same length (V.8) and width (V.9).  This formulation does not require the pre-processing 

phase adopted in Beasley [1985b] and uses a different number of binary variables.   

Hadjiconstantinou and Christofides also employ lagrangean relaxation in this model 

as a bounding procedure within a specialized branch-and-bound algorithm, and solve 

problems about the same size as those solved by Beasley [1985b].   

At each branching decision of the algorithm, a partial packing pattern is defined 

using a placement rule named left-most downward placement.  According to this rule, each 

item is packed at a position “which firstly minimizes the x-coordinate of the placement […] 

and secondly […] minimizes the y-coordinate of the placement.” A feasible placement 

location is a location where the item cannot be pushed downward and leftward, 

corresponding to a normal pattern.  Their procedure tries packing each item in all feasible 
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placement locations.  Figure V.5 shows admissible placement locations at a possible stage 

of the branch-and-bound search. 

 

Figure V.5 Admissible placement locations according to the ‘left-most downward 
placement’ rule.   
The next item to be cut (or packed) is positioned in accordance with the rule: first minimize 
the x-coordinate and then the y-coordinate. 

One of the major problems with this rule, as mentioned by the authors, is that 

different packing sequences can lead to the same packing pattern. 

In both approaches described above, binary variables are related to both the number 

of items and dimensions of the bin (stock piece).  The number of binary variables in each 

model increases with I L W∗ ∗ . 

Martello et al [2000] propose a procedure similar to the one proposed by 

Christofides and Hadjiconstantinou to enumerate patterns for packing individual bins in 

3D-BPP.  They develop an algorithm, ONEBIN, for testing if a given assignment of items 

to a bin is feasible. 

B. A MIP FORMULATION FOR 2D-KP 

In this section, we study a MIP formulation for 2D-KP, with the objective of better 

understanding the effect of using integer and binary variables to represent the relations 

involved.   

One of the main difficulties in formulating this family of problems is representing 

the physical constraint that no two items share the same region in space.  Previous works 

add an additional constraint of guillotine cuts, or use a discrete grid to represent the 
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possible packing positions.  In most cases, as in Beasley [1985b] and Hadjiconstantinou 

and Christofides [1995], no rotation is allowed.   

The work of Chen et al [1995], proposing a MIP for 3D-BPP, allows rotation, but 

the objective of the authors is to present “an analytical model to capture the mathematical 

essence of the problem.” They also conclude “a more efficient solution procedure is needed 

to solve large scale […] problems.” They solve an instance of 3D-KP with 6 items, but do 

not elaborate on the application of the algorithm for 2D-KP. 

We implement a similar model for 2D-KP, and use this model to study the effect of 

some modeling techniques on computational performance.  We use, as in Chen et al [1995], 

the relative position between items to handle the non-overlapping constraints. 

Let ( ),i ix y i I∈ , denote the horizontal (vertical) position of the left (lower) side of 

the item inside the bin, with the origin at the left lower corner of the bin.  In our model, we 

allow 90° rotations. 

1. Indicating whether an item is packed in the bin 

We use binary variables iIn , for each item i I∈ , to indicate whether item i  is 

packed in the bin. 

2. Indicating rotation 

Rotating an item means that the dimensions are interchanged: length becomes width 

and vice-versa.  To indicate whether an item is rotated in a packing, we use a binary 

indicator variable ir .  This variable takes value 1 if the item is rotated, and its dimensions 

are interchanged.  In mathematical terms, the right upper corner of item i , inside the bin, is 

given by 

 ( ) (1 )i i i i ix l r w r+ + − . (V.12)

 (1 ) ( )i i i i iy l r w r+ − + . (V.13)

Another approach is to define two different items, one with the original orientation 

and the other rotated, with the sizes exchanged.  If there exists an upper bound on how 

many items of each type may be used, each item counts towards this limit. 
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3. All packed items lie completely inside the bin 

When packed in the bin, all items have to be fully contained in the bin, so we use 

nonnegativity constraints on ix  and iy , and upper bounds on the position of the right upper 

corner of the item inside the bin 

 (1 ) ( ) ,i i i i ix l r w r X i I+ − + ≤ ∈ , (V.14)

 ( ) (1 ) ,i i i i iy l r w r Y i I+ + − ≤ ∈ . (V.15)

4. Enforcing no overlapping 

For two items to overlap, say i and ,j  four conditions must be met simultaneously, 

as shown in Figure V.6: 

• The right side of i must be to the right of the left side of j. 

• The upper side of j must be above the lower side of i. 

• The right side of j must be to the right of the left side of i. 

• The upper side of i must be above the lower side of j. 

 

Figure V.6 This figure represents the overlap of two items, i and j.   
In this example, the right side of i is to the right of the left side of j, the upper side of j is 
above the lower side of i, the right side of j is to the right of the left side of i, and the upper 
side of i is above the lower side of j. 

When three or fewer of these conditions occur, the items do not overlap.  For a 

better understanding of why this is true, consider each dimension separately.  In each of the 

dimensions, the items define intervals and we can rename the coordinates of the top, or 

right, side as Maxi, and the bottom, or left, side as Mini.  Then, items i and j overlap in a 



105 

given dimension if and only if i jMax Min>  and j iMax Min> .  This corresponds to two of 

the previous comparisons in one of the dimensions.  Also, items overlap if and only if they 

overlap in both dimensions. 

We use four binary indicator variables ijpx , jipx , ijpy , and jipy  to represent the 

result of each of the four comparisons, mentioned above, between items i and ,j  with 1 

representing true and 0 false.  For example, if the right side of item i  is located to the right 

of the left side of item j , then 1ijpx = , and if the upper side of j is above the lower side of 

item i , then 1jipy = .  We can enforce no overlapping using a cardinality constraint, 

ensuring that at most three of the binary variables take value 1.  Since X and Y are upper 

bounds on the horizontal (vertical) distance between items inside a container, we define the 

following set of constraints for the problem as follows: 

 [ (1 ) ( )] , , ,i i i i i j ijx l r w r x X px i I j I j i+ − + − ≤ ∗ ∀ ∈ ∀ ∈ ≠ , (V.16)

 [ ( ) (1 )] , , ,i i i i i j ijy l r w r y Y py i I j I j i+ + − − ≤ ∗ ∀ ∈ ∀ ∈ ≠ , (V.17)

 5 , , ,ij ij ji ji i jpx py px py In In i I j I j i+ + + ≤ − − ∀ ∈ ∀ ∈ > . (V.18)

    
Constraints (V.16) guarantee that the right side of item i will be to the right of the 

left side of item j only if ijpx  is set to 1.  There is a similar constraint with the roles of 

items i and j  interchanged.  Constraints (V.17) take care of the vertical comparisons.  The 

third set of constraints is the cardinality constraint.   

5. Implementing the MIP model 

The algebraic formulation is given by 

Indices: 

i, j Items to be packed, ,i I j I∈ ∈ . 
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Data: 

X  Length of bin. 

Y  Width of bin. 

iv  Value of item ,i i I∈ . 

il  Length of item ,i i I∈ . 

iw  Width of item ,i i I∈ . 

Variables: 

ijpx  
1 if the right side of item j is to the right of the left side of item i and 

0 otherwise. 

ijpy  1 if the top of item j is above the bottom of item i and 0 otherwise. 

iIn  1 if item i is packed in the bin and 0 otherwise. 

ir  1 if item i is rotated and 0 otherwise. 

ix  Horizontal position of the left side of item i in the bin. 

iy  Vertical position of the bottom of item i in the bin. 

Formulation: 

i i
i I

Max v In
∈

∗∑  ,        (V.19) 

 subject to 

 (1 ) ,i i i i ix l r w r X i I+ − + ≤ ∈ , (V.20)

 (1 ) ,i i i i iy l r w r Y i I+ + − ≤ ∈ , (V.21)

 [ (1 ) ] , ,i i i i i j ijx l r w r x X px i I j I+ − + − ≤ ∗ ∀ ∈ ∀ ∈ , (V.22)

 [ (1 )] , ,i i i i i j ijy l r w r y Y py i I j I+ + − − ≤ ∗ ∀ ∈ ∀ ∈ , (V.23)

 5 , , ,ij ij ji ji i jpx py px py In In i I j I j i+ + + ≤ − − ∀ ∈ ∀ ∈ > , (V.24)

 {0,1}, ,ijpx i I j I∈ ∀ ∈ ∀ ∈ , {0,1}, ,ijpy i I j I∈ ∀ ∈ ∀ ∈ , 

 {0,1},iIn i I∈ ∀ ∈ , {0,1},ir i I∈ ∀ ∈ , 

 0,ix i I≥ ∀ ∈ , 0,iy i I≥ ∀ ∈ . 
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Constraints (V.20) and (V.21) enforce the right and top limits of the bin for each 

item.  Constraints (V.22) and (V.23) are used to verify the relative position of items inside 

the bin.  If the items are not packed, we don't care about the values of pxij and pyij.  

Constraint (V.24) enforces non-overlap between two items only if both items are packed in 

the bin.   

We implemented this model using GAMS [GAMS 2000], and solve some instances 

from the literature using the CPLEX 6.6 solver [ILOG 2000] and OSL 2 [IBM 2000] on a 

Pentium IV 1.5 GHz personal computer, with default solution settings.  These instances 

are: twelve instances used by Beasley [1985b], referred to as NGCUT1 to NGCUT12, 

available from the OR-Library [Beasley 2002]; and instances 3 and 11 from 

Hadjiconstantinou and Christofides [1995], referred as HC3 and HC11.  Instances 

NGCUT6 (HC5), NGCUT7 (HC2), NGCUT9 (HC6) and NGCUT12 (HC7) are common 

to both works.  Table V.1 lists some details for these instances, including bin sizes, number 

of distinct types of item, and number of items available.  Beasley [1985b] implements his 

algorithm on a CDC 7600 computer, and Hadjiconstantinou and Christofides [1995] use a 

CYBER-855 computer.  Items are presorted to in an increasing value order. 
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Instance X Y 
# Types of 

Items 
# Items 

Beasley 

Run Times (Sec) 

H&C  

Run Times (Sec) 

NGCUT1 10 10 5 10 0.9 – 

NGCUT2 10 10 7 17 4.0 – 

NGCUT3 10 10 10 21 10.5 – 

NGCUT4 15 10 5 7 0.1 – 

NGCUT5 15 10 7 14 0.4 – 

NGCUT6 (HC5) 15 10 10 15 55.2 45.2 

NGCUT7 (HC2) 20 20 5 8 0.5 0.0 

NGCUT8 20 20 7 13 218.6 – 

NGCUT9 (HC6) 20 20 10 18 18.3 5.2 

NGCUT10 30 30 5 13 0.9 – 

NGCUT11 30 30 7 15 79.1 – 

NGCUT12 (HC7) 30 30 10 22 229.0 65.2 

HC3 30 30 7 7 – 532.0 

HC11 30 30 15 15 – > 800.0 

Table V.1 Description of instances used by Beasley [1985b] and Hadjiconstantinou and 
Christofides [1995].   
The fist column contains the references to the instances. The second and third columns 
contain the length and width of the bin. The forth and fifth columns list the number of 
different types of items and the total number of items in the instance. The last two columns 
contain run times reported by the authors, with H&C indicating Hadjiconstantinou and 
Christofides [1995].  A dash (–) in a cell indicates when an instance is not considered in 
the work.  The execution of instance HC11 was limited to 800 seconds. 

We initially address the oriented version of the problems, to be able to compare our 

results with the previous works.  Table V.2 presents run times obtained with our MIP, on a 

Pentium IV 1.5 GHz personal computer, and the run times reported by Beasley [1985b] and 

Hadjiconstantinou and Christofides [1995].  In this implementation, no rotations are 

allowed, so the rotation indicator is removed from the model.  Execution times are limited 

to 1,000 seconds. 
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Instances 

Optimal 

Solution 

Value 

Beasley 

Run Times 

(Sec) 

H&C Run 

Times (Sec) 
MIP Solution 

MIP Run 

Times 

CPLEX 6.6 

(Sec) 

NGCUT1 164 0.9 – 164 4.0 

NGCUT2 230 4.0 – 230 > 1,000 

NGCUT3 247 10.5 – 246 > 1,000 

NGCUT4 268 0.1 – 268 0.3 

NGCUT5 358 0.4 – 358 521.3 

NGCUT6 (HC5) 289 55.2 45.2 289 189.5 

NGCUT7 (HC2) 430 0.5 0.0 430 0.2 

NGCUT8 834 218.6 – 834 > 1,000 

NGCUT9 (HC6) 924 18.3 5.2 900 > 1,000 

NGCUT10 1,452 0.9 – 1,452 16.2 

NGCUT11 1,688 79.1 – 1,688 > 1,000 

NGCUT12 (HC7) 1,865 229.0 65.2 1,707 > 1,000 

HC3 1,178 – 532.0 1,178 0.2 

HC11 1,270 – > 800.0 1,270 > 1,000 

Table V.2 Run times obtained when solving selected instances from the literature, 
described in Table V.1.   
The execution of CPLEX 6.6 is limited to 1,000 seconds.  In instances NGCUT2, NGCUT8, 
NGCUT11, and HC11, although the solver attains the optimal solution value, it is not able 
to verify it.  In most instances, an optimal solution is obtained in a few seconds. 

CPLEX is able to solve most of these instances from the literature.  Only two 

instances are not solved to optimality within 1,000 seconds, but in another five instances 

the solver is not able to verify the optimality of the solution.  On the other hand, it is able to 

almost instantly solve instance HC3, which required Hadjiconstantinou and Christofides 

[1995] more than 500 seconds.  A close review of the model reveals the existence of 

several sources of symmetry, e.g., items of the same type being packed. 

Because of the promising results in this first application of the MIP on oriented 

versions of the instances, we decide to analyze ways of improving the model with the 

objectives of reducing symmetry and obtaining a tighter LP relaxation of the MIP.   



110 

6. Improved MIP model 

In order to obtain an improved model, we introduce some simple modifications, 

including additional constraints and inclusion of new data. 

Maximum Area:  

The total area covered by all packed items cannot be larger than the area of the bin.  

This constraint makes the LP relaxation tighter: 

 *i i i
i I

In l w X Y
∈

∗ ≤ ∗∑ . (V.25)

 

Type of item:  

The initial formulation does not use the information regarding the type of item 

being packed – two copies of the same item are considered different items.  Therefore, if 

item i  is packed and item j  not, but both are of the same type, then we can exchange them 

and obtain a similar packing pattern.  We can reduce this symmetry by including an 

additional type of data, it , type of item i , and use the order in which the items are included 

in a list to define the sequence to pack items of the same type.  The resulting constraint: 

, , , ,j i j iIn In i I j I t t j i≤ ∈ ∈ = > .     (V.26) 

Sorting items in the bin: 

If multiple items of a given type are packed in the bin, then we can exchange the 

position of these items and obtain basically the same pattern but with a different order in 

which the items are packed.  To eliminate this symmetry for two items of the same type 

packed, we force the item with higher order to be packed at a position with larger sum of 

coordinates:  

 , , , ,j j i i j ix y x y i I j I t t j i+ ≥ + ∀ ∈ ∀ ∈ = > . (V.27)

Admissible combinations of indicator variables: 

If we consider the indicator variables used to enforce no overlap between two items, 

pxij, pyij, pxji, and pyji, the admissible combinations, out of the 16 (24) possible, are shown in 

Figure V.7.  Item i  is fixed at the center while item j takes different positions relative to 

item i.  Each set of four digits indicates the values of the binary variables obtained when 

performing the comparisons mentioned above.  For example, the combination 0011, on the 

upper right corner of the picture, indicates: 
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• The right side of i is not to the right of the left side of j or 0ijpx = . 

• The top of i is not above the bottom of j or   0ijpy = . 

• The right side of j is to the right of the left side of i or  1jipx = .  

• The top of j is above the bottom of i or    1jipy = . 

     

 
Figure V.7 Allowed assignments for the indicator variables.   
Although there are 16 possible assignments to four binary variables, there are only nine 
combinations that could result from the comparison of the relative positions of two 
rectangles, and eight of those are feasible.  The combination 1111 is not feasible and 
indicates overlap. 

From this figure, it is possible to observe that at least two of the binary variables, 

one for each dimension, are always equal to 1 in a feasible solution.  Patterns 0101 and 

1010 are inadmissible, because these correspond to one of the dimensions with no binary 

variables taking value one (not physically possible).  We can, therefore, add another set of 

constraints, forcing the sum of the related indicator variables in each dimension to be at 

least one: 

 1, , ,ij jipx px i I j I j i+ ≥ ∀ ∈ ∀ ∈ > , (V.28)

 1, , ,ij jipy py i I j I j i+ ≥ ∀ ∈ ∀ ∈ > . (V.29)

Constraints on “large” items: 

If two items have the length (width) larger than half of the length (width) of the bin, 

and both are placed in the bin, then they have to be placed side by side in the width (length) 

of the bin.  In this case, the sum of all items placed in the bin, with length (width) larger 

than 2 ( 2)X Y , has to be less than the width (length) of the bin.: 
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, 2i

i i
i I l X

w In Y
∈ >

∗ ≤∑ , (V.30)

 
, 2i

i i
i I w Y

l In X
∈ >

∗ ≤∑ . (V.31)

Packing the most valued item in the first quadrant: 

Given a packing pattern, up to three other patterns might be generated just by 

reflection and rotation.  If several near optimal patterns are present in the instance, the 

solver requires more time to investigate these patterns.  To reduce this symmetry, we select 

the item with largest value and require it, if packed in the bin, to be placed in the first 

quadrant: 

 2, max{ | }i i kx X v v k I≤ = ∈ , (V.32)

 2, max{ | }i i ky Y v v k I≤ = ∈ . (V.33)

We apply this improved model, to the same instances, and the results are listed in 

Table V.3. 
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Instances 

Beasley 

Run Times 

(Sec) 

H&C Run 

Times (Sec) 

First MIP 

Run Times 

CPLEX 6.6 

(Sec) 

Improved 

MIP  

Run Times  

(Sec) 

NGCUT1 0.9 – 4.0 0.3 

NGCUT2 4.0 – > 1,000 81.8 

NGCUT3 10.5 – > 1,000 6.2 

NGCUT4 0.1 – 0.3 0.2 

NGCUT5 0.4 – 521.3 0.3 

NGCUT6 (HC5) 55.2 45.2 189.5 7.81 

NGCUT7 (HC2) 0.5 0.0 0.2 0.2 

NGCUT8 218.6 – > 1,000 > 1,000 

NGCUT9 (HC6) 18.3 5.2 > 1,000 21.1 

NGCUT10 0.9 – 16.2 0.3 

NGCUT11 79.1 – > 1,000 > 1,000 

NGCUT12 (HC7) 229.0 65.2 > 1,000 72.4 

HC3 – 532.0 0.2 0.2 

HC11 – > 800.0 > 1,000 > 1,000 

Table V.3 Comparison of the results of the first and improved models.   
Run times are substantially reduced.  In two instances, NGCUT8 and HC11, although the 
optimal solution is obtained, it is not verified within 1,000 seconds. 

With the improved model producing faster solutions to oriented problems, we adjust 

the model to solve orthogonal problems.  The rotation indicator is inserted in the model, 

and the “large” item constraint is removed, because of the possibility of rotation.  The 

following constraint concludes the changes in the model: 

Only rotate an item if loaded: 

 We only allow the rotation indicator to be set to 1 if the item is loaded, resulting in 

the constraint:  

 ,i ir In i I≤ ∀ ∈ . (V.34)

Table V.4 presents the results obtained with the orthogonal MIP model, also with a 

time window of 1,000 seconds. 
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Instances # Items 

Oriented 

 2D-KP 

Optimal 

Value 

Orthogonal 

MIP Value 

Improved 

MIP 

Run Times  

(Sec) 

NGCUT1 10 164 193 0.6 

NGCUT2 17 230 250 12.5 

NGCUT3 21 247 259 124.2 

NGCUT4 7 268 268 0.3 

NGCUT5 14 358 370 2.1 

NGCUT6 (HC5) 15 289 296 > 1,000 

NGCUT7 (HC2) 8 430 430 0.2 

NGCUT8 13 834 872 > 1,000 

NGCUT9 (HC6) 18 924 874 > 1,000 

NGCUT10 13 1,452 1,452 1.8 

NGCUT11 15 1,688 1,780 > 1,000 

NGCUT12 (HC7) 22 1,865 1,794 > 1,000 

HC3 7 1,178 1,272 0.7 

HC11 15 1,270 1,431 6.95 

Table V.4 Packing values for orthogonal versions of instances from the literature.   
The first three columns are from Table V.1.  The fourth column presents the values 
obtained with the MIP, and the fifth column the time required by the solver.  For instances 
solved within 1,000 seconds, the value obtained is optimal.  For the five instances not 
solved within the assigned time window, values are not guaranteed to be optimal, and in 
instances NGCUT9 (HC6) and NGCUT12 (HC7), values are even worse than the results 
obtained with the oriented version. 

 The solver is able to solve to optimality 9 out of 14 instances.  In 13 instances, the 

value returned by the orthogonal MIP is larger than the value obtained with the oriented 

version.  Table V.5 presents details of the solutions for the four instances without a verified 

optimal solution. 
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Instances Orthogonal  

MIP Value 

Integrality Gap 

(%) 

Time to Final 

Value (Sec) 

NGCUT6 296 5.76 14.3 

NGCUT8 872 7.57 625.5 

NGCUT9 (HC6) 874 10.0 422.3 

NGCUT11 1,780 3.4 20.0 

NGCUT12 (HC7) 1,794 8.7 182.0 

Table V.5 Details of the solutions at the end of the time window, for instances not solved 
within 1,000 seconds.   
The first two columns are from Table V.4.  The third column presents the value of the 
integrality gap in the last iteration of the MIP solver, representing the difference, in 
percentage, between the best integer solution and the best-relaxed solution.  The fourth 
column represents, in seconds, the time required by the solver to identify the solution. 

As shown in Table V.5, the largest integrality gap observed is 10.0%, corresponding 

to an instance where the returned value is smaller than the value obtained with the oriented 

version. 

Although it is not able to obtain an optimal solution within the time window 

assigned, the orthogonal MIP can solve 2D-KP using a commercial off-the-shelf (COTS) 

solver without the need of a special tree search. 

7. Analyzing the MIP Model 

In this section we discuss some of the characteristics of the MIP, in comparison 

with the integer linear programs from the previous section. 

For a given assignment to variables iIn , ijpx , ijpy , and ,ir  we observe that the 

values on constraints (V.26) are fixed.  Constraints (V.22) and (V.23) are reduced to regular 

upper bounds on variables xi and yi.  Constraints (V.19) and (V.20) present a +1 and a –1 in 

each row, with independent equations for each dimension.  The problem reduces to two 

independent longest path problems, in an acyclic network, and the position of the items 

within the bin can be computed efficiently using a network-based algorithm.  Items are 

positioned in the bin according to normal packing patterns.  In the work of Beasley [1985b] 

and Hadjiconstantinou and Christofides [1995], the computation of cut positions 

corresponding to normal packing patterns is performed in a pre-process phase.  In the 

previous work, normal packing is a pre-requisite, while here it is a result. 
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As mentioned earlier in this section, in the models proposed by Beasley [1985b] and 

Hadjiconstantinou and Christofides [1995], the number of binary variables required 

increases with I L W∗ ∗ .  In the present formulation, the number of binary variables 

increases with 2I . 

Another characteristic is that fixing the relative positions of a subset of the items 

may cause a significant reduction on the number of feasible combinations left for the 

indicator variables of other items.  As an example, if item j is fixed to be to the left of, and 

above, item i (1001), and item k is fixed to be to the right of, and below, item i (0110), then 

item k is also forced to be to the right of, and below, item j (0110).   

In a problem with three items, say i, j, k, we use 12 binary variables, just for 

controlling the relative position among items.  If all assignments to these variables are 

feasible, we have 212 = 4,096 possible assignments.  Since there are only eight feasible 

results when comparing each pair of items, we would have, at most, 83 = 512 options.  But 

when the relative positions between items i and j, and between items j and k, are given, the 

range of possible results, when comparing item i and k, is reduced, as shown in Table V.6.  

The rows correspond to i-j comparisons, the columns to j-k comparisons, and the entries in 

the table to possible assignments to indicator variables relative to i-k comparisons.  “ALL” 

means that all eight assignments are feasible.  There are only 240 feasible assignments for 

the 12 binary variables.  When a larger number of items are packed in the bin, the reduction 

can be substantial. 

Finally, this number of possible assignments can be reduced even further, if we 

consider only normal packing patterns.  In this case, most of the assignments in Table V.6 

will be excluded, because they do not correspond to normal patterns – at most 36 normal 

patterns exist with three items:  

• There are three choices for the item placed in the corner of the bin. 

• There are two choices for the next item to pack, and two options of where to 

place it. 

• There are at most three positions to place the last item. 
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 Comparisons between items j and k 

 1011 0011 0111 0110 1110 1100 1101 1001 

1011 
1011 
1001 
0011 

1011 
0011 

1011 
0011 
0111 

1011 
0011 
0111 
0110 
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1100 
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1101 
1110 
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1001 

0011  0011 0011 
0111 
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Table V.6 Possible results of the comparisons between items i and j, and j and k.   
Row labels are the comparisons between items i and j.  Column labels are the comparisons 
between items j and k.  Table entries are the permissable comparisons between i and k.  As 
an example, if j is above i (1011) and k is below j (1110), then k can be at any position 
relative to i (ALL). 

In Chapter VI, we present an algorithm for orthogonal 2D-KP able to identify 

optimal solutions more efficiently than the MIP model.  We also extend this algorithm to 

solve 3D-KP instances. 
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VI. NEW ALGORITHMS FOR MD-KP 

This Chapter proposes a new exact algorithm for 2D-KP, based on the HVZ 

algorithm introduced in Chapter III, and compares the computational performance of this 

algorithm with some published results for 2D-KP.  Then we convert this algorithm, by 

limiting the number of iterations, into a heuristic, and compare the performance with the 

exact algorithm and other published results.  We also extend the algorithm to solve 3D-KP, 

and finally introduce a new heuristic for packing a large number of items, but with only a 

few different types, in a two-dimensional bin.   

A. A NEW ALGORITHM FOR 2D-KP 

In Chapter I we observe there are four different types of decisions when solving 

instances of MD-BPP: partition, order, orientation, and relative position.  In the case of 

MD-KP, we also encounter the same basic decisions.  The only difference occurs in the 

partition section, because to solve a MD-BPP we need to determine how many copies of an 

item to load in which bin, while in MD-KP there is only one bin and we want to maximize 

the value of the items packed. 

The objective function value obtained in an instance of MD-KP depends only on the 

partition decision – if it is feasible to pack all selected items, then the order, orientation, or 

relative position among them does not change the value obtained in the packing.  Therefore, 

we can divide the solution of MD-KP in two stages: selecting which items to pack, the 

packing list, and testing whether packing the items in the packing list is feasible. 

The HVZ algorithm, proposed in Chapter IV, is developed to verify the feasibility 

of packing a certain number of boxes of the same type in a pallet.  In that context, two 

characters are necessary to represent boxes at different orientations, and a third character to 

represent wasted area.  But if there are two or more different types of items to pack, we can 

increase the number of characters used in the coding.  If items with types A, B, and C have 

to be packed in a bin, we can denote , , andA B C  as rotated items, with the length 

exchanged with the width.  With Z representing wasted area, we can represent any packing 

pattern produced with these items, and apply the same basic algorithm to verify the 
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feasibility of a packing list.  As an example, if we want to pack the items listed in Table 

VI.1, selected from instance NGCUT6 [Beasley 1985b], in the 15 10×  bin, we obtain the 

string DBECF AGH , representing the packing pattern in Figure VI.1.  In this example, the 

packing pattern yields no wasted area.   

TYPE A B C D E F G H 
LENGTH 10 2 11 3 6 4 2 4 
WIDTH 3 9 2 8 4 5 4 1 
VALUE 74 50 48 46 32 32 11 7 

Table VI.1 Description of items to be packed in a 15 10×  bin, based on instance NGCUT6 

[Beasley 1985b].   

The value of this packing list is 300, and is better than the solution obtained in Chapter V, 

with the orthogonal MIP limited to 1,000 seconds. 

This verification procedure is used within a first stage tree search algorithm to solve 

2D-KP.  We call this the Two-Dimensional Diagonal Fill Algorithm (2D-DFA). 

 

 
Figure VI.1 Packing pattern obtained when packing items listed in Table VI.1 in the 
15×10  bin. 

1. Implementing the 2D Diagonal Fill Algorithm   

The 2D-DFA is a branch-and-bound procedure.  It divides the list I of items to pack 

into three groups: items examined but not present in the packing list, items included in the 

packing list, and items yet to be examined.  At each node of the search tree, the algorithm 

selects an item to be included in the packing list.  If there exists a feasible pattern with this 
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packing list, then the procedure branches and an additional item is selected to be included 

in the list.  If it is not feasible to pack the list, then the algorithm backtracks, and the item 

under consideration is marked as not being used, and the next item is selected.   

In order to help reduce the depth of the searchtree, the list I is pre-sorted in 

decreasing values iv  and, at each node of the search tree, if the sum of the values of all 

items yet to be examined plus the total value of the present packing list is less than or equal 

to the best known solution, the algorithm also backtracks.  As in PLP case, if less than half 

of the items in the packing list are packed in the bin, and the packing pattern already 

presents more than half of the total wasted area, then the algorithm also backtracks. 

2. Computational Results 

We compare run times and results obtained when applying the 2D-DFA, on an 

Athlon 1 GHz personal computer, with the algorithms proposed by Beasley [1985b] and 

Hadjiconstantinou and Christofides [1995], as described in Chapter V.  Table VI.2 presents 

the results for the three algorithms, initially with fixed orientation, because the algorithms 

proposed in prior work only handle instances with this restriction. 

Table VI.2 also contains the results obtained when applying the 2D-DFA to the 

orthogonal versions of the same instances from the literature.  Using the results of the 

orthogonal model as reference, column “Variation” presents the relative decrease observed 

in the value of the optimal solution when adopting the fixed orientation restriction.  We can 

observe from the table that a reduction on the order of 15.0% is obtained with instance 

NGCUT1, with an average reduction in the order of 4.9%.  The fixed orientation restriction 

changes the optimal objective function value in 11 out of 14 instances.  By allowing items 

to rotate, the solution space is increased substantially, even when no better solutions are 

produced, resulting in a considerable increase in run time. 
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Fixed Orientation 90º Rotation Allowed 

Instance Optimum 
Value 

Beasley 
(Sec) 

H & C 
(Sec) 

2D-DFA
(Sec) 

Optimum 
Value  

Variation 
(%) 

2D-DFA 
(Sec) 

NGCUT1 164 0.9 – 0.0 193 15.0 0.0
NGCUT2 230 4.0 – 0.1 250 8.0 0.1
NGCUT3 247 10.5 – 0.3 259 4.6 0.6
NGCUT4 268 0.1 – 0.0 268 0.0 0.0
NGCUT5  358 0.4 – 0.0 370 3.2 0.0
NGCUT6  (HC5) 289 55.2 45.2 0.3 300 3.7 1.7
NGCUT7  (HC2) 430 0.5 0.0 0.0 430 0.0 0.0
NGCUT8 834 218.6 – 1.4 886 5.9 2.6
NGCUT9  (HC6) 924 18.3 5.2 0.2 930 0.6 10.3
NGCUT10 1,452 0.9 – 0.0 1,452 0.0 0.3
NGCUT11 1,688 79.1 – 1.7 1,786 5.5 84.5
NGCUT12  (HC7) 1,865 229.0 65.2 1.5 1,932 3.5 19.4
HC3 1,178 - 532.0 0.0 1,272 7.4 0.0
HC11 1,270 - 800.0 0.0 1,431 11.3 0.6

Table VI.2 Comparison of run times and results obtained with the 2D-DFA. 

This table compares results and run times obtained with the 2D-DFA with other 

algorithms, for oriented instances of 2D-KP in the literature; and presents results and run 

times of the 2D-DFA, when applied on the same instances, but with 90º rotations allowed.  

The column variation indicates the decrease, in percentage, resulting from restricting the 

instances of 2D-KP to fixed orientation. 

3. A Variation of the 2D-DFA 

The 2D-DFA can be implemented with a different first stage.  In the procedure 

described above, whenever an item is added to the group of items being packed, the 

algorithm verifies that a feasible packing pattern exists using these items.  But if we have a 

good solution, previously obtained with the algorithm or a heuristic, we could decide to 

only verify the feasibility of packing patterns with total value larger than the current best 

value.  In this case, we would have to solve fewer feasibility problems.  This variation to 

the 2D-DFA is also implemented, but the differences on computational performance are 

small.   

B. A NEW 2D-KP HEURISTIC – LIMITING THE NUMBER OF ITERATIONS 

Although the 2D-DFA is able to solve some instances of 2D-KP from the literature, 

the algorithm’s worst-case exponential run time results in extremely long run times as soon 
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as the number of different types of items, or the number of items of each type available, 

gets larger.  In this case, as previously discussed, we need to use a heuristic or to add 

additional restrictions in order to obtain a good solution in a timely fashion.   

Wang [1983] adopts the second alternative, adding the restriction that the patterns 

are of guillotine type.  Her algorithm minimizes the trim loss, or the amount of wasted area, 

in constrained 2D-KP instances, constructing larger rectangles by consecutively joining 

items.  Daza et al [1995] use “informed methods” to improve Wang’s algorithm, and 

compare their algorithm with two others from the literature – Wang’s [1983] and Oliveira 

and Ferreira [1990] - using eight 2D-KP instances, P-1 to P-8, described in the paper.  We 

apply the 2D-DFA to the same instances.  Table VI.3 presents the results, and run times, 

from Daza et al [1995] and obtained by 2D-DFA. 

Daza et al [1995] 2D-DFA 
Instance Trim Loss Run Time 

(Sec) Trim Loss Run Time 
(Sec) 

P-1 0 9.33 0 0.00
P-2 29 48.94 22 115.07
P-3 43 109.74 43 1,033.14
P-4 31 38.01 31 1,342.05
P-5 0 1.32 0 0.00
P-6 0 8.12 0 0.11
P-7 8 13.34 5 33.23
P-8 34 21.53 34 274.53

Table VI.3 Trim loss and run times presented in Daza et al [1995] and obtained by 2D-
DFA for eight instances of 2D-KP.    
The 2D-DFA is executed on an Athlon 1 GHz personal computer. 

Because the 2D-DFA considers patterns other than those generated by guillotine 

cuts, it is able to find solutions to two instances with less waste than the algorithm proposed 

by Daza et al [1995], but at the expense of a considerable increase in run time. 

We investigate an alternate approach: the Limited Iteration 2D-DFA (2D-LDFA) 

limits the number of backtracks in the verification stage of the algorithm.  If the feasibility 

of a packing list is unknown when this limit is reached, then it is considered as infeasible.  

We have no way to specify this limit a priori, with the number of items in the list and the 

size of the bin being important in the selection.  If this limit is set too small, solutions might 

be far from optimal.  If the limit is too large, long run times result. 
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Table VI.4 has the results of the application of two different levels: 1,000 and 

10,000 backtracks allowed.  With the former level, the optimal solution is obtained in 5 out 

of 8 cases, taking on average 11.79 seconds to solve each instance.  With the latter level, all 

instances are solved to optimality, taking on average 37.01 seconds.   

2D-LDFA – 1,000 Backtracks 2D-LDFA – 10,000 
backtracks Instance 

Wasted Area Run Time 
(Sec) Wasted Area Run Time 

(Sec) 
P-1 0 0.00 0 0.00
P-2 24 31.58 22 99.20
P-3 87 15.49 43 90.41
P-4 31 16.15 31 86.01
P-5  0 0.00 0 0.00
P-6   0 3.62 0 0.11
P-7   5 6.87 5 27.96
P-8 70 20.60 34 65.69

Table VI.4 Wasted areas and run times observed using the 2D-LDFA, with limits on 1,000 
and 10,000 backtracks on the verification stage of the algorithm. 

C. EXTENDING DFA TO SOLVE 3D-KP 

A natural step to follow is to extend the DFA algorithm to solve three-dimensional 

problems.  In this section, we implement an algorithm for 3D-KP, verify its performance 

with some test instances, and propose a simple heuristic based on limiting the number of 

iterations in the verification stage of the algorithm.     

1. Implementing the Three-Dimensional Diagonal Fill Algorithm   

The transformation of the DFA to work with three-dimensional problems is 

straightforward.  No changes are required in the first stage of the algorithm, because it only 

selects items to be loaded in the bin.  This stage is essentially independent of the 

dimensionality of the problem.  The second stage requires the addition of a third dimension, 

the height, in the grid representing the positions in the bin where items may be positioned 

in a normal packing pattern, and new labels to represent all six possible orientations of 

items inside the bin.  We call this algorithm the Three-Dimensional Diagonal Fill 

Algorithm – 3D-DFA. 
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2. Computational Results 

The 3D-DFA is applied to the same instance presented by Chen et al [1995], and it 

computes an optimal solution in less than a millisecond.  Then, we generate a set of 10 

random instances, with the following characteristics: 

• All bins have dimensions 30 20 15× × . 

• Items dimensions are selected, independently, in the range [5, 15], with uniform  

probability. 

• Item values are integral values based on the volume of the corresponding item 

type, and are selected, also with uniform probability, in the range 

[ ]0.05 ,0.15ItemVolume ItemVolume∗ ∗ . 

• The number of items available from each type are selected in {1, 2, 3}. 

• Items are generated and included in an instance until the sum of item volumes is 

larger than a number generated between 7,200 and 10,800, or between 80% and 

120% of the volume of the bin. 

Table VI.6 contains general information of the instances M-1 to M-10, generated 

above.  The information, presented in column order, is: instance, number of different types 

of item, number of items, total volume of items, total value of the items and an upper-

bound on the value of the optimal packing, obtained by modeling the problem as a 1D-KP 

instance, using the volumes and values. 



126 

 

Instance # Item 
Types # Items 

Total 
Volume of 

Items 

Total Value 
of Items 

Upper-
Bound on 
Optimal 

Value 
M-1 6 15 13,411 1,281 941
M-2 8 17 10,840 1,116 990
M-3 2 6 8,352 1,221 1,221
M-4 4 10 10,074 1,060 909
M-5 6 13 10,120 1,022 905
M-6 7 16 12,065 1,107 917
M-7 6 10 9,889 824 752
M-8 2 5 12,468 847 579
M-9 5 10 11,511 1,158 971
M-10 6 14 12,567 958 767
Averages 5.2 11.6 11,129.7 1,169.4 895.2

Table VI.5 Descriptive information of the random instances used to investigate the 
performance of the 3D-DFA.   
The information, presented in column order, is: instance, number of different types of item, 
number of items, total volume of items, total value of the items and an upper-bound on the 
value of the optimal packing, obtained using the volumes and values in as an 1D-KP 
instance  

Table VI.6 presents the results, and run times, observed when applying the 3D-DFA 

on the 10 random instances, M-1 to M-10, oriented and orthogonal versions.   

Oriented Orthogonal 
Instance Value Run Time 

(Sec) 
Value Run Time 

(Sec) 
M-1 663 3.25 869 741.28
M-2 843 44.71 939 3,222.39
M-3 814 0.00 946 0.00
M-4 666 0.10 892 3.35
M-5 796 0.82 905 69.20
M-6 677 5.44 789 1,941.40
M-7 616 0.00 720 6.21
M-8 386 0.00 386 0.00
M-9 756 0.00 883 5.05
M-10 590 0.27 712 77.28

Table VI.6 Optimal values and run times, in seconds, obtained with the 3D-DFA, oriented 
and orthogonal versions, on 10 random instances. 

The optimal values obtained in the oriented version are, on average, 14.5% smaller 

than those generated with the orthogonal version.  In one case, the fixed orientation 
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restriction accounts for a 25.3% decrease in optimal solution value.  But, as expected, larger 

problems require much longer periods of time before an optimal solution is obtained.  As in 

the two-dimensional version, the use of a heuristic may be the only approach to generate 

“good” solutions in a timely fashion. 

D. THE LIMITED ITERATION 3D-KP HEURISTIC  

As in the two-dimensional case, the 3D-DFA can be converted into a heuristic by 

limiting the number of iterations on the verification stage of the algorithm.  Table VI.8 

presents the comparison of results obtained with the orthogonal 3D-LDFA with the upper 

bound based on 1D-KP, and the results of the oriented and the orthogonal 3D-DFA. 

3D-DFA 3D-LDFA 
Instance Upper Bound Fixed 

Orientation 
90º Rotations 

Allowed 
Value Run Time 

(Sec) 
M-1 941 663 869 869 40.43
M-2 990 843 939 897 54.43
M-3 1221 814 946 946 0.00
M-4 909 666 892 822 1.70
M-5 905 796 905 866 13.13
M-6 917 677 789 759 109.96
M-7 752 616 720 665 1.10
M-8 579 386 386 386 0.00
M-9 971 756  883 883 1.54
M-10 767 590 712 704 39.27

Table VI.7 Packing values, and run times, obtained with the 3D-LDFA. 
Execution is limited to 200 backtracks before restarting the search tree, at the first level of 
the tree, on an Athlon 1 GHz personal computer. 

E. A FIVE-BLOCK HEURISTIC FOR 2D-KP 

In Section C we present a heuristic for 2D-KP based on limiting the number of 

iterations of the verification stage of the DFA.  There is no constraint on the number of 

items of the same type in the packing pattern, so if this number is large, even the proposed 

heuristic can require long run times.   

There is a variation of the 2D-KP for which the use of a PLP heuristic, combined 

with partitioning the bin in blocks, may yield very good results.  Scheithauer and 

Sommerweiss [1998] investigate the Rectangle Packing Problem (RPP).  In an instance of 
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RPP, a relative large amount of items, from a few different item types, have to be packed in 

a bin, with the objective of maximizing the used area.  Using the typology proposed by 

Dyckhoff [1990], this problem is of type 2 / / /B O F .  There may be constraints on the 

minimum and maximum number of items of each type in the packing pattern.   

In their work, the authors divide the bin in up to four blocks, as in the Four-Block 

heuristic for PLP, and use the G4-heuristic [Scheithauer and Terno 1996], within each 

block, to select the item type to pack in the block.  Only items of the same type are packed 

in each block.  The wasted area computed up to a step in the algorithm is used as a 

bounding rule.  The authors report that the heuristic, the Four-Block Heuristic, yields area 

usage above 99% of the bin area in several random instances solved.  One of the possible 

improvements considered by the authors, but not implemented, is the use of five blocks, 

with the addition of a central block, as in the five-block heuristic for PLP. 

Because the analysis of the G5-heuristic for PLP, in Chapter IV, shows that it 

generates solutions as good as the G4-heuristic, we investigate the Five-Block Heuristic for 

2D-KP using the G5-heuristic to define the composition of each block.   

1. Implementing the Five-Block Heuristic for 2D-KP 

The main difference between the four-block and five-block heuristics, as indicated 

by their titles, is the maximum number of blocks containing items of the same type allowed 

in the solution.  The four-block heuristic generates solutions similar to Figure II.7, while 

the five-block heuristic can produce solutions resembling Figure II.8. 

As in the PLP case, we only consider linear combinations of the length and width of 

each item being packed when defining the dimensions of the two initial corner blocks 

(blocks I and III).  Then, we apply the G5-heuristic within each block to determine the 

packing pattern.  We store the best packing patterns obtained for a block with given 

dimensions so we can use it again later in the algorithm, if necessary.   

For each item k, we consider, without loss of generality, that k kl w≥ .  The 

dimensions of block , 1,2,3,4,5,i i =  are given by ( , )i iL W , and iC  the total value of the 

items packed in block i .  In the algorithm proposed by Scheithauer and Sommerweiss 
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[1998], iC  is defined by the used area within each block.  In the present algorithm, we 

consider the more general case of 2D-KP. 

Let { | , , }l k kG g g L g n l m w for someitem k= ≤ = ∗ + ∗  be the set of dimensions to 

be investigated as the length of blocks I and III.   

Let { | , , }w k kG g g W g n l m w for someitem k= ≤ = ∗ + ∗ be the set of dimensions to 

be investigated as the width of blocks I and III. 

The pseudocode for the five-block heuristic for 2D-KP is: 

For each 1 lL G∈ , 2 1L X L← −  

For each 1 wW G∈ , 3 1 1, computeW Y W C← −  

For each 3 lL G∈ , 4 3 4, computeL X L C← −  

For each 3 wW G∈ , 2 3 2 3,compute andW Y W C C← −  

 If no blocks overlap, then  

Compute 5 5 5, andL W C  

If 1 2 3 4 5C C C C C+ + + +  is higher than the previous best, record solution. 

2. Computational Results 

Scheithauer and Sommerweiss [1998] use sets of 100 random generated instances to 

investigate the performance of the four-block heuristic.  The bin has fixed dimensions, 

1, 250 800× , and items are uniformly generated in the range [ ]100, 300 .  All instances 

initially have four different item types, and additional item types are added until ten 

different types are available in each instance.  Then the algorithm is applied successively to 

each instance, with from four up to ten item types.  In our analysis of the performance of 

the five-block heuristic, we use a set of instances generated using the same procedure.  

Initially, the objective is to minimize wasted area.   

Table VI.8 presents some statistics computed from the results of the application of 

the five-block heuristic to the set of 100 instances.  Columns are numbered from four to ten, 

representing the number of different item types in each instance group.  The “G5-heuristic” 

and “Four-block” rows present the average area usage resulting from the selection of the 

best G5-heuristic pattern, and best four-block pattern.  The “Five-block” row has average 
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area usage obtained with the five-block, with the same instances.  The number of instances, 

out of 100, where the five-block yields a better result than the four-block is counted in the 

row “Better.”   

 4 5 6 7 8 9 10 
Four-block (%) 98.70 98.94 99.15 99.27 99.39 99.46 99.52

G5-heuristic (%) 95.72 96.22 96.56 96.78 97.00 97.15 97.32
Five-block (%) 98.82 99.04 99.23 99.34 99.46 99.51 99.57

Better 36 35 36 42 39 35 39

Table VI.8 Average area usage obtained with three different block heuristics.   
Columns are numbered from four to ten, representing the number of different item types in 
each set of instances.  Each set is composed of 100 randomly generated problems.  The 
“G5-heuristic” and “four-block” rows contain the average area usage resulting from the 
selection of the best G5-heuristic pattern, and best four-block pattern.  The “Five-block” 
row has average area usage obtained with the five-block, with the same instances.  The 
number of instances, out of 100, where the five-block yields a better result than the four-
block is counted in the row “Better.” 

In the table, we can observe that more than 35% of the instances had a better 

solution using the five-block heuristic, although the improvement in area usage is small.  

The relative change in wasted area, when it occurs, is on the order of 20%.  The authors of 

the four-block heuristic observe that up to 96 items can be packed in the instances 

considered.  In this case, the items are small relative to the bin, making them easer to pack.   

The average run times for the five-block heuristic are compatible with those 

reported for the four-block heuristic, but the run times with the five-block heuristic do not 

increase with number of types of items as quickly as with the four-block (as reported by 

Scheithauer and Sommerweiss [1998], and shown in Table VI.9).  The run times presented 

in the table for the five-block corresponds to the execution on a Athlon 1 GHz personal 

computer.  For the four-block heuristic, times are those reported in the original work on a 

586 200 MHz personal computer. 

Heuristic 4 5 6 7 8 9 10 
Four-block (Sec) 0.20 0.34 0.54 0.73 1.02 1.37 1.78
Five-Block (Sec) 0.10 0.14 0.17 0.21 0.24 0.28 0.34

Table VI.9 Average run times, in seconds, with the five-block heuristic, in the present 
research, and the four-block heuristic, as reported by Scheithauer and Sommerweiss 
[1998]. 

We generate a second set with 100 random instances, this time with items with 

dimensions selected in the range [ ]200, 400 , and the same bin.  Instances with this range of 
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items contain a minimum of 6 and a maximum of 24 items.  Table VI.10, with the same 

layout as Table VI.9, presents the results for this new set. 

 4 5 6 7 8 9 10 
Four-block (%) 96.41 97.08 97.47 97.80 98.10 98.39 98.52

G5-heuristic 
(%) 

92.46 93.24 93.65 93.91 94.28 94.61 94.80

Five-block (%) 96.51 97.19 97.52 97.90 98.21 98.49 98.60
Better 11 14 12 18 25 22 23

Table VI.10 Results obtained with 100 instances, item dimensions selected in the range 
[200,400], with the same layout as Table VI.8. 

In this range, although the number of cases in which the five-block heuristic 

generates a better solution is smaller than in Table VI.9, the relative change in the wasted 

area is about the same.   

3. A More General Case of 2D-KP 

Besides the number of blocks, and the underlying PLP heuristic, another difference 

between the four-block heuristic [Scheithauer and Sommerweiss 1998] and the proposed 

five-block heuristic is that the former is implemented to solve the variation of 2D-KP, 

based on maximizing the area usage of packed items, or minimization of trim loss.  The 

four-block heuristic proponents do not directly address the more general case, where the 

value iv  of item type i  is different than, and not even related to, the area of the item. 

The five-block heuristic is developed with this more general instance in view, and it 

can select the best block composition based on the total value of items packed in the block, 

not the wasted area in it.  But in this case, the bounding procedure based directly on wasted 

area does not work, because it is possible to generate a block with more wasted area, but 

with larger value. 

To overcome this difficulty, we adopt a different bounding procedure: 

• Compute, a priori, the Maximum Value Density (MVD) – the largest ratio 

between the value of an item and its area: ( )( )i i ii I
MVD Max v l w

∈
= ∗ ; 

• After defining the dimensions of a block, and solving the associated PLP 

instance, add all wasted area observed up to that point, including any inter-block 

wasted areas; 
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• Compute the useable area left in the bin, subtracting all wasted area from the bin 

area;  

• The sum of the values of the blocks already defined, plus the product of the 

MVD and useable area is an upper bound on total number of items; and 

• If this sum is smaller than the present best solution value, then move to another 

branch of the search tree.    

This bounding procedure is not as efficient as the procedure used when the problem 

involves only the minimization of trim loss, where the value density is just equal to one. 

To verify the performance with this new heuristic, we generate another set, with the 

same characteristics as the set applied in the minimization of trim loss case, but with items 

with value densities uniformly drawn in the range [ ]0.5,1.5 .  Table VI.11 contains the 

average ratio of packing value per bin area obtained with the best G5-heuristic solution and 

with the five-block heuristic, for each group of 100 instances.  The table also includes the 

number of instances, out of 100, where the five-block heuristic yields a better solution then 

the G5-heuristic.  The last row has the average run times for the five-block, on an Athlon 1 

GHz personal computer. 

 4 5 6 7 8 9 10 
G5-heuristic (%) 1.17 1.22 1.24 1.26 1.27 1.28 1.29
Five-block (%) 1.20 1.25 1.28 1.30 1.32 1.33 1.34

Better 64 79 82 85 86 88 89
Run Times 0.39 0.62 0.84 1.18 1.66 2.10 2.71

Table VI.11 Average ratio of packing value by bin area obtained with the G5- and five-
block heuristics.   
Columns are numbered from four to ten, representing the number of different item types in 
each set of instances.  Each set is composed of 100 randomly-generated problems.  The 
“G5-heuristic” and “Five-block” rows have average ratio of packing value by bin area 
obtained with the corresponding heuristic.  The number of instances, out of 100, where the 
five-block yields a better result than the four-block is counted in the row “Better.”  
Average run times, in seconds, observed with the five-block heuristic are listed in the last 
row. 
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VII. THE MULTIDIMENSIONAL BIN PACKING PROBLEM 

Martello et al [2000] present an exact algorithm for 3D-BPP, and state “to our 

knowledge, no algorithms for the exact solution of 3D-BPP have been published.”  This 

work comes after more than three decades dedicated by several researchers to this problem, 

since Gilmore and Gomory [1965] first described their formulation of the Three-

Dimensional Cutting Problem.  But Martello et al had to give up something in order to 

control the exponential growth of the enumeration problem – they only consider instances 

with fixed orientation. 

In the previous chapters, we have developed the necessary tools to determine if it is 

feasible to pack a given list (packing list) of items in a single bin, and to select the packing 

list with maximum value to pack in a single bin in both two- and three-dimensions.  To 

conclude our studies in this dissertation, we employ these tools to develop exact and 

heuristic algorithms for 2D-BPP and 3D-BPP, which handle orthogonal problems (only 90º 

rotations are allowed), and show that these algorithms can be used to solve instances of 

MD-BPP from the literature. 

A. SOLUTION APPROACHES FOR MD-BPP IN THE LITERATURE 

The first solution approach for 2D-BPP in the literature is proposed by Gilmore and 

Gomory [1965].  It involves the combined use of Two-Stage Guillotine Cutting Patterns 

(shown in Chapter IV), linear programming with column generation techniques (previously 

applied in the one-dimensional version [Gilmore and Gomory 1961]), and the solution of 

two knapsack problems, one for each dimension, at each column generation step.  As in the 

one-dimensional case, fractional solutions are rounded to integer ones.  The authors also 

present and discuss the extension of their solution technique to 3D-BPP. 

Chen et al [1995] propose a different approach, based on a MIP for 3D-BPP.  Only 

a small instance of 3D-KP is solved in the paper.  As discussed in Chapter V, adopting a 

MIP model and a general-purpose solver sacrifices information regarding the geometric 

construction of the constraints. 
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Martello et al [2000] analyze new bounds for 3D-BPP, and present both exact and 

approximate algorithms.  Their exact algorithm is based on a two-level decomposition, also 

used for 2D-BPP [Martello and Vigo 1998], and can be traced back to the original ideas of 

Gilmore and Gomory [1961].  Both works consider only fixed-orientation instances. 

Wang [1983] proposes an approximation algorithm for The General Cutting Stock 

Problem, a version of orthogonal 2D-BPP, allowing bins of different sizes but considering 

only guillotine cuts.  Chung et al [1982] uses a hybrid procedure, based on 2D-PP, in an 

approximation algorithm for 2D-BPP, also with fixed orientation. 

Heuristics for solving 3D-BPP are proposed by Ivancic et al (as reported by 

Bischoff and Ratcliff [1995]), Bischoff and Ratcliff [1995], Terno et al [2000], Lodi et al 

[2002b], among others.   

B. OBTAINING EXACT SOLUTIONS TO MD-BPP 

Our algorithm to solve MD-BPP is a Branch-and-Price (B&P) algorithm (e.g., 

Johnson et al [2000]), based on the original cutting stock formulation of Gilmore and 

Gomory [1961], but solved to optimality.  Our branch-and-bound algorithm uses a linear 

relaxation of Gilmore and Gomory’s integer linear program with dynamic column 

generation, employing our proposed two-stage algorithms for MD-KP for column 

generation. 

As described by Gilmore and Gomory [1961], given a list I of item types to cut, 

with demand ,id i I∈ , if set of all feasible cutting patterns, J, is known beforehand, our 

problem becomes selecting how many times each cutting pattern is used to produce the 

optimal solution, attending the demand of all items, and using the least amount of stock.  

Let , ,ija i I j J∈ ∈  represent the number of items of type i  in the pattern j .  If two 

patterns present the same numbers of each item type, even in a different layout, they are 

considered to be the same pattern. 
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The formulation is: 

Indices:   

 i  Item types, i I∈ . 

 j  Cutting patterns, j J∈ . 

Data:   

 id  Demand of item type i . 

 ija  Number of items of type i  in pattern j . 

Variables:   

 jx  Number of times pattern j  is used in the cutting process. 

Formulation: 

j
j J

Min x
∈
∑ , 

subject to 

 ,ij j i
j J

a x d i I
∈

= ∈∑ , VII.1 

 
jx Z +∈ .  

The main deficiency with this approach is that the feasible patterns are not known 

beforehand, because identifying all potential patterns requires too much computational 

effort.  To overcome this difficulty, Gilmore and Gomory [1961] propose the application of 

the simplex algorithm, and the generation of a pattern only when it prices favorably.  In the 

one-dimensional case, generating a pattern requires solving a 1D-KP [Gilmore and Gomory 

1961].  In the two-dimensional case, when considering only two-stage cutting patterns, two 

instances of 1D-KP are solved to generate a pattern [Gilmore and Gomory 1965].   In the 

general case, addressed in this dissertation, a 2D-KP or 3D-KP is solved to generate a 

pattern. 
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The algorithm starts by generating the columns necessary to establish a simplex 

basis and computing the simplex multipliers associated with it.  The basis is obtained by 

solving an instance of MD-KP considering only one type of item per column generated, and 

the multipliers are used to identify a favorable new column, again using the algorithm for 

MD-KP.  A new basis and corresponding simplex multipliers are obtained, and the search 

for a new column is repeated.  When no additional favorable columns can be generated, the 

algorithm proceeds to the branch-and-bound stage.  In this stage, as new integrality 

restrictions are generated, each new extended linear program instance is solved, again, with 

column generation. 

To investigate this new algorithm, we implement it in a non-automated fashion.  

Once the first set of columns, corresponding to the initial relaxed LP is generated, this set is  

exported to an EXCEL 2000 [Microsoft 1999] spreadsheet, where the IP solver is used to 

identify the cuts to be added to the relaxed LP, in order to generate new simplex 

multipliers.  Although the procedure takes advantage of a previous basis when solving a the 

system with an added column, the whole procedure is painfully slow, and is only adopted to 

show that it can be used to solve MD-BPP.   

We initially apply the proposed algorithm on a subset of 2D-BPP instances 

investigated by Martello and Vigo [1998].  This subset contains 28 problems originally 

created as 2D-KP instances, and are solved as 2D-BPP with fixed orientation.  Christofides 

and Whitlock [1977] generate three instances (CGCUT1-CGCUT3), and Beasley [1985a 

and 1985b] the other 25 instances (GCUT1-GCUT13 and NGCUT1-GCUT12).  Among 

these instances, on 14 occasions the solution with the oriented algorithm does not equal the 

continuous lower bound and could benefit from the application of an orthogonal algorithm.  

In 12 of these instances, the algorithm proposed here obtains an orthogonal solution better 

than the oriented solution, with a 10.4% (17 bin) reduction in the number of bins required 

to pack all items. 

Table VII.1 presents the data relating 2D-BPP instances analyzed.  The first column 

identifies the instance; the next column shows the number of items to pack in the instance; 

the third column represents the continuous lower bound; the fourth lists the number of bins 

required in the oriented version of the instance, as by Martello and Vigo [1998]; the fifth 
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lists the number of bins required in the orthogonal version, as obtained in this dissertation; 

and the last column shows the relative reduction in the number of bins used in each 

instance. 

Instance # Item 
Types # Items 

Continuous 
Lower 
Bound 

Martello 
and Vigo 
Solution 

Orthogonal 
Optimal 
Solution 

Variation 
(%) 

CGCUT1 7 16 2 2 2 0.0 
CGCUT2 10 23 2 2 2 0.0 
CGCUT3 20 62 16 23 18 27.8 
GCUT1 10 10 3 5 4 25.0 
GCUT2 20 20 5 6 5 20.0 
GCUT3 30 30 7 8 7 14.3 
GCUT4 50 50 12 14 13 7.7 
GCUT5 10 10 3 3 3 0.0 
GCUT6 20 20 5 7 6 16.7 
GCUT7 30 30 9 11 10 10.0 
GCUT8 50 50 12 14* 12 16.7 
GCUT9 10 10 3 3 3 0.0 
GCUT10 20 20 6 7 7 0.0 
GCUT11 30 30 7 9 8 12.5 
GCUT12 50 50 13 16 15 6.7 
GCUT13 32 32 2 2 2 0.0 
NGCUT1 5 10 2 3 3 0.0 
NGCUT2 7 17 3 4 3 33.3 
NGCUT3 10 21 3 3 3 0.0 
NGCUT4 5 7 2 2 2 0.0 
NGCUT5 7 14 3 3 3 0.0 
NGCUT6 10 15 2 3 2 50.0 
NGCUT7 5 8 1 1 1 0.0 
NGCUT8 7 13 2 2 2 0.0 
NGCUT9 10 18 3 3 3 0.0 
NGCUT10 5 13 2 3 3 0.0 
NGCUT11 7 15 2 2 2 0.0 
NGCUT12 10 22 3 3 3 0.0 
TOTAL 487 636 135 164 147 11.6 

Table VII.1 Results for 2D-BPP instances  solved with our exact algorithm.   
The first column identifies the instance; the next two columns show the number of different 
item types and number of items to pack in the instance; the fourth column represents the 
continuous lower bound; the fifth has the number of bins required in the oriented version of 
the instance, as obtained in Martello and Vigo [1998]; the sixth has the number of bins 
required in the orthogonal version, as obtained in the present work; and the last column 
shows the relative increase in the number of bins, when comparing the optimal solution 
value of the oriented version with the optimal solution value of the orthogonal version.       
* Indicates that the result is the best available, but may not be optimal for the oriented 
version of the instance. 

Observe that the fixed orientation restriction imposed by Martello and Vigo might 

produce solutions 50% larger than necessary in a packing situation, as in instance 

NGCUT6.  Even in instances requiring the use of several bins, as in CGCUT3, the 

restriction contributes an increase of 27.8% to the number of bins used. 
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Run times involved in solving these instances to optimality range from less than a 

second, as in instance NGCUT7, to several hours, as in instance GCUT8.  In this latter 

instance, more than 200 columns are generated by the algorithm, 136 of those in the initial 

relaxed LP.  Table VII.2 presents the number of columns generated in the procedure, in the 

initial relaxed LP, and within the branch-and-bound procedure. 

Instance # Item 
Types # Items 

Continuous 
Lower 
Bound 

Orthogonal 
Optimal 
Solution 

# Columns 
in the 
Initial 
Phase 

# Columns 
in the BB 

Phase 

CGCUT1 7 16 2 2 23 0 
CGCUT2 10 23 2 2 12 0 
CGCUT3 20 62 16 18 59 17 
GCUT1 10 10 3 4 20 0 
GCUT2 20 20 5 5 58 0 
GCUT3 30 30 7 7 97 30 
GCUT4 50 50 12 13 121 0 
GCUT5 10 10 3 3 13 0 
GCUT6 20 20 5 6 64 0 
GCUT7 30 30 9 10 80 0 
GCUT8 50 50 12 12 136 100 
GCUT9 10 10 3 3 13 0 
GCUT10 20 20 6 7 44 0 
GCUT11 30 30 7 8 79 0 
GCUT12 50 50 13 15 128 3 
GCUT13 32 32 2 2 34 0 
NGCUT1 5 10 2 2 12 5 
NGCUT2 7 17 3 3 18 0 
NGCUT3 10 21 3 3 25 0 
NGCUT4 5 7 2 2 6 0 
NGCUT5 7 14 3 3 20 0 
NGCUT6 10 15 2 2 29 0 
NGCUT7 5 8 1 1 6 0 
NGCUT8 7 13 2 2 8 0 
NGCUT9 10 18 3 3 31 0 
NGCUT10 5 13 2 3 12 0 
NGCUT11 7 15 2 2 20 0 
NGCUT12 10 22 3 3 34 0 

Table VII.2 Details of column generation in the application of the B&P algorithm to the 
same instances as in Table VII.1.   
The first column identifies the instance, the next two columns show the number of different 
item types and number of items to pack in the instance, the fourth column represents the 
continuous lower bound, the fifth has the number of bins required in the orthogonal 
version, the sixth column shows the number of columns generated in the initial LP, and the 
last column presents the number of columns generated within the branch-and-price 
algorithm. 

We also apply the algorithm on 47 3D-BPP instances (Iva-1 to Iva-47) initially 

investigated by Ivancic et al (as reported by Bischoff and Ratcliff [1995]) and Bischoff and 

Ratcliff [1995].  Both works consider heuristics for orthogonal 3D-BPP and in these 
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instances all items can be rotated on the three axes.  On 12 instances, one or both heuristics 

are able to obtain an optimal solution, as verified with the continuous lower bound, leaving 

35 instances to be investigated.  The exact solution obtained by the new algorithm is better 

than the previously known solution on 30 instances.  In total, the solution with the 

heuristics requires 79 bins more than the optimal solution.  The combined result, selecting 

the best heuristic solution to each instance, requires 61 more bins or 8.9% of the total.   

Table VII.3 presents data for the instances of 3D-BPP analyzed.  The first column 

identifies the instance, the next column shows the number different types of items to pack 

in the instance, the third column represents the continuous lower bound, the fourth and fifth 

have the number of bins obtained with the heuristics proposed by Ivancic et al (as reported 

by Bischoff and Ratcliff [1995]) and Bischoff and Ratcliff, respectively, the sixth column 

has the number of bins required in the optimal solution to the orthogonal version, as 

obtained in the present work, and the last column shows the relative increase in the number 

of bins used in each instance, with respect to the best solution in the previous work. 

Observe that the heuristics generate solutions up to 50% larger than the optimal 

solution. 

Run times to solve these instances to optimality range from less than a second, as in 

instance Iva-1 to more than four days, as in instance Iva-45.  In this latter instance, the 

volume utilization in each of the two bins is larger than 97%, with 47 and 52 items packed.  

In some cases, the 3D-DFA algorithm requires several hours to generate a new column, 

with only 17 columns generated, 7 in the initial relaxed LP, and 10 others within the 

branch-and-bound procedure (Table VII.4). 
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Instance # Item 
Types # Items 

Continuous 
Lower 
Bound 

Ivancic et 
al 

Solution 

Bischoff / 
Ratcliff 
Solution 

Orthogonal 
Optimal 
Solution 

Change from 
Previous 
Best (%) 

Iva-1 2 70 25 26 27 25 4.0 
Iva-2 2 70 8 11 11 9 22.2 
Iva-3 4 180 19 20 21 19 5.3 
Iva-4 4 180 26 27 29 26 3.8 
Iva-5 4 180 50 65 61 51 19.6 
Iva-6 3 103 10 10 10 10 0.0 
Iva-7 3 103 16 16 16 16 0.0 
Iva-8 3 103 4 5 4 4 0.0 
Iva-9 2 110 16 19 19 19 0.0 
Iva-10 2 110 37 55 55 55 0.0 
Iva-11 2 110 14 18 19 16 12.5 
Iva-12 3 95 45 55 55 53 3.8 
Iva-13 3 95 20 27 25 25 0.0 
Iva-14 3 95 27 28 27 27 0.0 
Iva-15 3 95 11 11 11 11 0.0 
Iva-16 3 95 21 34 28 26 7.7 
Iva-17 3 95 7 8 8 7 14.3 
Iva-18 3 47 2 3 3 2 50.0 
Iva-19 3 47 3 3 3 3 0.0 
Iva-20 3 47 4 5 5 5 0.0 
Iva-21 5 95 17 24 24 20 20.0 
Iva-22 5 95 8 10 11 8 25.0 
Iva-23 5 95 17 21 22 18 16.7 
Iva-24 4 72 5 6 6 5 20.0 
Iva-25 4 72 4 6 5 5 0.0 
Iva-26 4 72 3 3 3 3 0.0 
Iva-27 3 95 4 5 5 4 25.0 
Iva-28 3 95 9 10 11 9 11.1 
Iva-29 4 118 15 18 17 16 6.3 
Iva-30 4 118 18 24 24 20 20.0 
Iva-31 4 118 11 13 13 12 8.3 
Iva-32 3 90 4 5 4 4 0.0 
Iva-33 3 90 4 5 5 4 25.0 
Iva-34 3 90 7 9 9 8 12.5 
Iva-35 2 84 2 3 3 2 50.0 
Iva-36 2 84 14 18 19 14 28.6 
Iva-37 3 102 22 26 27 23 13.0 
Iva-38 3 102 45 50 56 45 11.1 
Iva-39 3 102 12 16 16 15 6.7 
Iva-40 4 85 7 9 10 8 12.5 
Iva-41 4 85 14 16 16 15 6.7 
Iva-42 3 90 4 4 5 4 0.0 
Iva-43 3 90 3 3 3 3 0.0 
Iva-44 3 90 3 4 4 3 33.3 
Iva-45 4 99 2 3 3 2 50.0 
Iva-46 4 99 2 2 2 2 0.0 
Iva-47 4 99 3 4 3 3 0.0 

TOTAL 154 4,556 624 763 763 684 8.9 

Table VII.3 Results of instances from the literature solved with the exact algorithm for 3D-
BPP.   
Combining the best heuristic results, for each instance, a total of 745 bins are needed to 
pack all items, a number 8.9% larger than the 684 bins required in the optimal solution. 
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Instance # Item 
Types # Items 

Continuous 
Lower 
Bound 

Orthogonal 
Optimal 
Solution 

# Columns in 
the Initial 

Phase 

# Columns 
in the BB 

Phase 
Iva-1 2 70 25 25 3 0 
Iva-2 2 70 8 9 4 3 
Iva-3 4 180 19 19 6 5 
Iva-4 4 180 26 26 5 2 
Iva-5 4 180 50 51 6 0 
Iva-6 3 103 10 10 4 0 
Iva-7 3 103 16 16 3 0 
Iva-8 3 103 4 4 4 0 
Iva-9 2 110 16 19 2 1 
Iva-10 2 110 37 55 2 0 
Iva-11 2 110 14 16 2 1 
Iva-12 3 95 45 53 4 0 
Iva-13 3 95 20 25 4 2 
Iva-14 3 95 27 27 5 0 
Iva-15 3 95 11 11 6 0 
Iva-16 3 95 21 26 5 0 
Iva-17 3 95 7 7 6 2 
Iva-18 3 47 2 2 4 0 
Iva-19 3 47 3 3 4 0 
Iva-20 3 47 4 5 6 8 
Iva-21 5 95 17 20 9 1 
Iva-22 5 95 8 8 10 7 
Iva-23 5 95 17 18 8 11 
Iva-24 4 72 5 5 6 10 
Iva-25 4 72 4 5 7 3 
Iva-26 4 72 3 3 6 0 
Iva-27 3 95 4 4 3 15 
Iva-28 3 95 9 9 5 6 
Iva-29 4 118 15 16 6 7 
Iva-30 4 118 18 20 7 5 
Iva-31 4 118 11 12 5 14 
Iva-32 3 90 4 4 4 3 
Iva-33 3 90 4 4 3 12 
Iva-34 3 90 7 8 6 10 
Iva-35 2 84 2 2 3 1 
Iva-36 2 84 14 14 3 0 
Iva-37 3 102 22 23 5 0 
Iva-38 3 102 45 45 4 0 
Iva-39 3 102 12 15 5 3 
Iva-40 4 85 7 8 5 9 
Iva-41 4 85 14 15 8 3 
Iva-42 3 90 4 4 4 0 
Iva-43 3 90 3 3 4 0 
Iva-44 3 90 3 3 4 1 
Iva-45 4 99 2 2 10 7 
Iva-46 4 99 2 2 8 0 
Iva-47 4 99 3 3 6 0 

Table VII.4 Details of column generation in the application of the B&P algorithm to the 
same instances as in Table VII.3.   
The first three columns are the same as those in Table VII.3; the fourth column represents 
the continuous lower bound; the fifth has the number of bins required in the orthogonal 
version; the sixth column shows the number of columns generated in the initial LP; and the 
last column presents the number of columns generated within the branch-and-price 
algorithm. 



142 

Recently, Eley [2002] presents results of the application of a new heuristic on, 

supposedly, the same data set, obtaining complete packing using 716 bins.  We are not able 

to compare our results with those reported by Eley because some differences can be 

observed between the instances of the data sets used in both works, with Eley reporting 

solutions to 3D-BPP using a number of bins smaller than the volume ratio bound 

(continuous lower bound) for the instances investigated here, and available at the OR-

Library [Beasley 2002].  As an example, Table VII.5 lists the data for instance Iva-18.  The 

continuous lower bound for this instance is 2, but Eley reports requiring only one bin to 

pack all items. 

# Item Types 3   

Bin Dimensions: (30, 21, 18) Volume of Bin: 11,340 

Items Dimensions: (6, 9, 12) (7, 4, 10) (3, 5, 11) 

# Items Available 20 15 12 

Volume of Items 12,960 4,200 1,980 

Volume Ratio 1.68   

Table VII.5 Details of instance Iva-18, initially investigated by Ivancic at al (as reported 
by Bischoff and Ratcliff [1995]) and available online at the OR-Library [Beasley 2002].   
Eley [2002] reports packing all items in this instance in only one bin, while the volume 
ratio bound (continuous lower bound) is two bins. 

C. A MORE GENERAL VERSION OF 2D-BPP 

Up to this point, the problems covered in this chapter belong to the groups 

2 / / /V I R  and 3 / / /V I R  in Dyckhoff’s typology [1990].  In these two groups, there is 

only one type of bin available.  Another interesting set of instances has bins (or pieces of 

stock) of different sizes available, identified by 2 / / /V D R or 3 / / /V D R . 

Wang [1983] studies a variation of 2D-BPP where stock rectangles with different 

sizes are available, and the objective is to minimize the waste in the production a given 

number of rectangular pieces.  She proposes a heuristic based on constructing larger 

rectangles from smaller ones to solve this problem, and presents the results of applying the 

algorithm on two instances. 
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Beasley [1985c] investigates an even more general version of the problem, the Two-

Dimensional Assortment Problem (2D-AP), considering the cost of the different pieces of 

stock and smaller rectangular items.  Following Wang [1983], Beasley solves the instances 

using a heuristic, with column generation as in the original work of Gilmore and Gomory 

[1965]. 

Both authors only consider guillotine cut patterns in their algorithms. 

We present two new heuristics, based on replacing the 2D-DFA in the exact 

algorithm for 2D-BPP.  In the former heuristic, we adopt the five-block heuristic for 2D-KP 

to generate the packing, or cutting, patterns.  In the latter, the 2D-LDFA is used. 

 
Skalbeck 

and Schultz 

Wang 

[1983] 

Beasley 

[1985c] 
5B 2D-LDFA 

Stock Area 326,736 331,344 327,312 322,992 322,128

Waste (%) 1.90 3.20 2.05 0.74 0.47

Run Time - 12min 58sec 8min 3sec 12 sec 1min 15sec

Table VII.6 Results of the application of different heuristics to an instance investigated by 
Skalbeck and Schultz (as reported by Beasley [1985c]), and also solved by Wang [1983] 
and Beasley [1985c].   
The “5B” column lists the results of using the five-block heuristic for 2D-KP, and the “2D-
LDFA” column lists the results of using the 2D-LDFA heuristic, limited to 1,000 
backtracks, instead of the 2D-DFA within the branch-and-price algorithm for 2D-BPP. 

The heuristic is initially applied on an instance originally investigated by Skalbeck 

and Schultz (as reported by Beasley [1985c]), and also solved by Wang [1983] and Beasley 

[1985c].  Table VII.6 presents the results published in these papers, and two results 

obtained in this dissertation: the “5B” column lists the results of using the five-block 

heuristic for 2D-KP, and the “2D-LDFA” column lists the results of using the 2D-LDFA 

heuristic, limited to 1,000 backtracks, instead of the 2D-DFA, within the branch-and-price 

algorithm for 2D-BPP. 

Beasley [1985c] investigates another set of with 12 instances of 2D-AP.  The 

website of the OR-Library [Beasley 2002] reports that “the optimal solution values are not 

known at present.”  We apply the five-block based heuristic on the same instances.  The 

results obtained are listed in Table VII.7. 
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Beasley [1985c] 5B 

Instance 
Total Area of 

Items 

Total Stock 

Area Waste 

(%) 

Run Time 

(sec) 

Waste 

(%) 

Run Time 

(sec) 

1 288,840 304,270 7.69 14.8 5.07 0.6 

2 507,080 514,928 4.17 41.1 1.52 1.7 

3 812,020 831,262 5.87 91.4 2.31 4.0 

4 243,640 249,406 6.63 26.5 2.31 0.4 

5 560,040 566,708 4.95 116.7 1.17 3.4 

6 840,240 856,391 7.62 313.3 1.89 9.1 

7 1,691,060 1,777,783 16.84 12.5 4.88 1.5 

8 3,638,720 3,792,048 5.48 58.9 4.03 11.7 

9 5,311,440 5,408,779 9.07 116.9 1.80 31.0 

10 1,624,940 1,757,942 13.80 24.4 7.57 0.8 

11 3,538,860 3,642,437 6.65 204.3 2.84 8.0 

12 5,131,900 5,265,505 5.89 182.3 2.54 18.6 

Table VII.7 Results for 12 instances of 2D-AP investigated by Beasley [1985c].   
Results credited to Beasley are from the original work, including run times obtained with a 
CDC 7600 computer.  The columns labeled “5B” present the results of applying the five-
block based heuristic, on an Athlon 1 GHz personal computer. 
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VIII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

RESEARCH 

In this chapter, we review the contributions of this dissertation and suggest further 

research.    

A. CONCLUSIONS AND CONTRIBUTIONS 

This dissertation covered distinct flavors of Multidimensional Packing Problems, 

considering instances in two and three dimensions, with different objective functions.  In all 

instances considered here, both items and bins have rectangular shapes. 

In Chapter I, besides introducing the notation and the typology of MD-PP, and 

reviewing previous work, we analyze the effect of restricting rotation and certain types of 

pattern restrictions on the number of bins used on 2D-BPP.  It is shown that restricting the 

orientation of items can lead to solutions using twice as many bins as when 90º rotations 

are allowed.  The restrictions of guillotine cut patterns and 1st-order non-guillotine patterns 

are also considered, with asymptotic results presented.  For the case when items have to be 

packed together, or connected, up to a 33% increase in the number of bins can be expected. 

Chapters III and IV are dedicated to Pallet Loading Problems (PLP).   

In Chapter III, we define the idea of the Minimum Size Instance (MSI) of an 

equivalence class of PLP, and show that every class has one and only one MSI.  This makes 

the MSI extremely helpful in distinguishing equivalence classes.  We also develop bounds 

on the dimensions of item and pallet in the MSI of a class, given the set of efficient 

partitions of an instance of that class.  We also show that a bound used for almost 15 years 

[Dowsland 1987] is incorrect. 

Applying the newly developed bounds to the MSI, we enumerate all equivalence 

classes with area ratio bound as large as 100.  Previous work in this area considered at most 

a subset of these classes. 

 Chapter IV presents a set of new bounds and algorithms developed with the 

objective of solving all instances enumerated in Chapter III.   
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The first of these new bounds is the Single Homogeneous Perfect Partition (SHPP) 

bound.  This bound, together with simple heuristics, proves optimality of almost 50% of all 

classes that have no proven optimal solution after applying other simple bounds.   

The second bound is the Single Perfect Partition (SPP) bound.  It can be useful 

when the MSI of a class presents only one perfect X-partition or Y-partition. 

The third bound is the Relaxed Class (RC) bound, requiring the definition of new 

relations among distinct equivalence classes of PLP – restricted and relaxed classes.  Every 

feasible packing pattern in a restricted class is shown to be adoptable by a relaxed class. 

The fourth bound, the Combined Perfect Partition and Relaxed Class (CPPRC) 

bound, combines ideas of the SHPP and the RC bounds. 

Bounds based on similarity of classes and an improved LP bound are presented, but 

not completely explored.  These two bounds are applied to only a few instances of PLP. 

Among the algorithms, the Hollow Block Heuristic is the simplest one proposed in 

Chapter IV.  It is related to the diagonal heuristic, described in Nelissen [1993], but has a 

simpler structure.  The G5-heuristic generates 1st-order non-guillotine packing patterns, and 

finds optimal solutions to all instances of PLP with an area ratio (AR) bound of up to 51 

boxes, 99.999% of all instances with an AR bound of up to 100 boxes, and differs at most 

by one box in the 0.001% remaining instances. 

Three other heuristics are proposes based on non-guillotine cut patterns of higher 

order, with at most eight blocks.  These heuristics solve some instances not solved with the 

G5-heuristic, nor by other heuristics from the literature. 

After the application of the proposed bounding procedures and heuristics, 6,952 

equivalence classes of PLP with an AR bound of up to 100 boxes remain without a proven 

optimal solution.  An exact algorithm is developed to solve these last remaining instances.  

The HVZ algorithm is based on the idea of representing a packing pattern with a ternary 

string, with the characters H, V, and Z.  This new exact algorithm, together with the 

application of the RC bound, is able to identify the optimal solution to the remaining 

instances, obtaining in only three equivalence classes a solution not generated with the 

heuristics proposed in this dissertation. 
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Chapters V and VI are dedicated to knapsack problems, in two and three 

dimensions (2D-KP and 3D-KP).   

In Chapter V we implement a mixed integer program (MIP) model of 2D-KP and 

show that it can be used, with a commercial optimization software to solve some instances 

from the literature. 

In Chapter VI, we extend the HVZ algorithm for PLP to develop the Diagonal Fill 

Algorithm (DFA) for 2D-KP and 3D-KP, and show that these new algorithms are able to 

solve orthogonal versions of instances from the literature only solved before considering 

fixed orientation or guillotine cut patterns.  The two proposed algorithms, 2D-DFA and 3D-

DFA, are the first algorithms in the literature to solve orthogonal non-guillotine instances 

of 2D-KP and 3D-KP. 

Multidimensional Bin Packing Problems (MD-BPP) are addressed in Chapter VII.  

New branch-and-price algorithms for 2D-BPP and 3D-BPP, based on the 2D-DFA and 3D-

DFA are developed.  These are also the first algorithms in the literature to solve the 

orthogonal non-guillotine instances.   

For cases where a good solution soon is better than an optimal solution later, we 

substitute the exact algorithms for MD-KP in the branch-and-price procedure for MD-BPP.  

This new heuristic finds better solutions to instances of MD-BPP from the literature.   

B. SUGESTIONS FOR FURTHER RESEARCH 

In PLP, several open questions remain regarding the representation of packing 

patterns with HVZ strings.  Among these questions, we can list: 

• How many distinct HVZ strings are necessary to represent an optimal packing 

pattern for all instances with up to a given number of items packed? 

• Given a PLP instance, is it possible to compute a tight bound on the length of 

the HVZ string? 

• Given an HVZ string, can we determine the classes in which it corresponds to 

an optimal packing pattern? 

• Is there an efficient method of generating the packing pattern from the HVZ 

string?  
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The MIP model, analyzed in Chapter V, is applied only with a commercial solver, 

and we do not investigate of the performance of this model with a special-purpose branch 

and bound algorithm.  One such procedure might branch on all indicator variables related to 

the comparison of two items at a time.  Another procedure might fix, at each node, the 

position of an item, and insert additional constraints on other item positions.  Another 

application of the model, also not explored, is within the 2D- and 3D-DFA.  In this case, a 

relaxed model could compute bounds at some or all nodes of the search tree. 

Both the 2D-DFA and 3D-DFA are implemented with the primary purposes of 

showing that they can effectively solve MD-KP instances of reasonable size and 

complexity.  Several performance improvements can be applied to these algorithms.  For 

example, one deficiency of the algorithms is that the packing solution generated at each 

step is not reused in the next step, when a new item is included in the packing list.  We 

believe that a significant improvement in processing speed can be achieved by correcting 

this deficiency.   

The algorithms for MD-BPP have been implemented only as prototypes and would 

require refining for use in the real world.   
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